Изобретение относится к технологии получения диокисда урана и оксидных композиций на его основе, применяемых в ядерной технологии.
Известен способ, согласно которому смеси окислов получают осаждением из растворов смесей диураната аммония и гидроокиси плутония с последующей фильтрацией, сушкой, прокаливанием и восстановлением водорода [1]
Разработанная также способ получения порошка UO2-PuO2 разложением уран-плутониевых нитратов в кипящем слое, состоящем из двух этапов: денитрированиго при 375oC нитратных растворов с получением смеси порошков UO3-PuO2 и последующего восстановления водородом при 600oC до UO2-PuO2 [1]
Однако в настоящее время известны более эффективные технологии получения керамического ядерного топлива.
Разработан способ получения композиции UO2•PuO2 разложением растворов с помощью СВЧ-излучения [2] Смесевой раствор нитратов урана и плутония помещали в широкий плоский сосуд внутри денитратора, поток микроволновой энергии направляли от генератора по волноводу к слою раствора в сосуде, свободная и связанная вода при этом испарялась, нитраты разлагались, давая оксидную композицию PuO2•UO3. Этот продукт перегружали в печь прокалки-восстановления, где доводили до состава PuO2•UO2 [2]
Другим перспективным методом в технологии получения оксидных материалов является разложение распыленных растворов в высокотемпературном теплоносителе.
Наиболее близким к заявленному способу является способ получения оксидных порошков [3] включающий термическое разложение растворов нитрата уранила, который может содержать также нитраты других металлов, в диспергированном состоянии в потоке индукционно генерируемой плазмы. Разложение проводят в восстановительных условиях, которые создают, добавляя к исходному раствору уксусную кислоту, при этом молярное отношение уксусная кислота нитрат-ион поддерживают в пределах 1,0 1,5. Описанный способ получают порошки диоксида урана и смешанного диоксида урана и плутония, а также урана и гадолиния (прототип).
Задачей изобретения является повышение безопасности процесса, а также уменьшение размеров частиц получаемых порошков т снижение давления прессования и температуры спекания при получении изделий из них.
Задачу решают тем, что в способе получения диоксида урана или оксидной композиции на его основе, включающем разложение распыленного нитратного раствора, содержащего металлы, в потоке плазменного теплоносителя в присутствии восстановления соединения, содержащего ацетат-ион, взятого в мольном отношении ацетат-ион к нитрат-иону не менее 1,1, и выделение целевого продукта из полученной пылепарогазовой смеси, в качестве соединения, содержащего ацетат-ион, используют ацетат аммония.
Ацетат аммония вводят в мольном отношении к суммарному содержанию нитрат-ионов в растворе, равном 1,1 1,6.
Основные процессы, происходящие при разложении нитратных растворов в плазменном теплоносителе, можно охараткеризовать следующим уравнениям реакций:
Способ осуществляют следующим образом.
Готовят исходный раствор, содержащий нитрат уранила или нитрат уранила и нитрат другого элемента, композицию с оксидом которого собираются получить.
В раствор вводят ацетат аммония в заданном количестве, от 1,1, до 1,6 молей на 1 моль нитрат-иона, присутствующего в растворе.
Установка для переработки раствора включает плазмотрон, форсунки для распыления раствора, реакционную камеру, пылеулавливающее устройство и систему очистки отходящих газов.
Раствор распыляют при помощи форсунок и вводят в контакт с потоком азота, нагретого до состояния низкотемпературной плазмы. При этом происходит разложение нитратов в соответствии с вышеприведенными уравнениями реакций.
Из образовавшейся пылепарогазовой смеси в пылеулавливающем устройстве отделяют целевой продукт, а сбросные газы направляют на очистку.
Результаты экспериментов представлены в таблице.
Как видно из таблицы, заявляемый способ позволяет получить порошки диоксида урана и оксидные композиции на его основе, по своим качественным характеристикам соответствующие требованиям технических условий на керамическое ядерное топливо как по содержанию примесей, так и по валентности крана.
Кроме того, размер частиц порошка, полученного заявляемым способом, не превышает 0,5 мкм в сравнении с 0,6 1,2 мкм для порошка, полученного с использованием уксусной кислоты. Режимы, необходимые для получения изделий из порошков, полученных с использованием уксусной кислоты, характеризуются давлением 450 550 МПа при прессовании и температурой 1600 1700oC при спекании, в то время как порошки, полученные заявляемым способом, позволяют снизить эти параметры до 200 250 МПа и 1400 1500 oC соответственно.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРИГОТОВЛЕНИЯ ПОРОШКА ДИОКСИДА УРАНА | 2011 |
|
RU2472709C1 |
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА | 1998 |
|
RU2203225C2 |
СПОСОБ ПОЛУЧЕНИЯ ИНДИВИДУАЛЬНЫХ И СМЕШАННЫХ ОКСИДОВ МЕТАЛЛОВ | 2013 |
|
RU2543086C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ ПОРОШКООБРАЗНЫХ ОКСИДОВ МЕТАЛЛОВ ИЗ НИТРАТОВ МЕТАЛЛОВ В ЯДЕРНОЙ ПРОМЫШЛЕННОСТИ | 1996 |
|
RU2175643C2 |
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДЫХ РАСТВОРОВ ОКСИДОВ АКТИНИДОВ | 2012 |
|
RU2494479C1 |
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА | 2010 |
|
RU2446107C1 |
СПОСОБ РАСТВОРЕНИЯ МОКС-ТОПЛИВА | 2010 |
|
RU2451639C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕШАННЫХ ОКСИДОВ УРАНА И ПЛУТОНИЯ | 2015 |
|
RU2626854C2 |
СПОСОБ ПОЛУЧЕНИЯ НИТРАТА УРАНИЛА | 2013 |
|
RU2563480C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, ВКЛЮЧАЮЩЕГО ТВЕРДЫЙ РАСТВОР ДИОКСИДА УРАНА И ДИОКСИДА ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ДРУГОГО АКТИНИДА И/ИЛИ ЛАНТАНИДА | 2014 |
|
RU2662526C2 |
Использование: технология получения диоксида урана и оксидных композиций на его основе, применяемых в ядерной технологии. Сущность способа: проводят разложение распыленного нитратного раствора соответствующих металлов, содержащего ацетат аммония в мольном соотношении к суммарному содержанию нитрат-иона в растворе не менее 1,1, предпочтительно 1,1 - 1,6, в потоке плазменного теплоносителя и выделение целевого продукта из полученной пылепарогазовой смеси. 1 з.п. ф-лы, 1 табл.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Самойлов А.Г | |||
Тепловыделяющие элементы ядерных реакторов | |||
- М.: Энергоатомиздат, 1985, с | |||
Нефтяной конвертер | 1922 |
|
SU64A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Туманов Ю.Н | |||
Низкотемпературная плазма и высокочастотные электромагнитные поля в процессах получения материалов для ядерной энергетики | |||
- М.: Энергоатомиздат, 1989, с | |||
Топливник с глухим подом | 1918 |
|
SU141A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Заявка РФ N 93045344, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-10-20—Публикация
1995-12-09—Подача