ВЫСОКОЧАСТОТНЫЙ ОЗОНАТОР Российский патент 1997 года по МПК C01B13/11 

Описание патента на изобретение RU2095307C1

Изобретение относится к химическому машиностроению, а именно к устройствам, предназначенным для получения озона из кислорода или кислородсодержащих газовых смесей, в частности из воздуха, и может быть использовано для решения экологических проблем (подготовка питьевой воды, обработка сточных вод, газовых выбросов промышленных предприятий) в металлургической, химической, пищевой промышленностях и является усовершенствованием известного устройства.

Известный высокочастотный озонатор содержит высокочастотный источник питания и генератор озона [1]
Недостатком известного высокочастотного озонатора является не достаточно высокий коэффициент полезного действия (КПД) и не достаточно высокая надежность.

Целью изобретения является повышение надежности и коэффициента полезного действия высокочастотного озонатора.

Поставленная цель достигается тем, что в высокочастотном озонаторе искусственная длинная линия выполнена в виде спирали, намотанной на петлеобразном разомкнутом каркасе, между торцами которого расположен генератор озона.

Приведенные отличительные признаки изобретения позволяют сделать заключение о соответствии предлагаемого устройства критерию "новизна".

При исследовании, проведенном по патентной и научно-технической литературе, аналоги высокочастотного озонатора, в котором длинная линия выполняется в виде спирали, намотанной на петлеобразном разомкнутом каркасе, между торцами которого расположен генератор озона, не обнаружены, что обеспечивает предлагаемому устройству соответствие критерию "существенные отличия".

Сущность изобретения заключается в следующем. Идеальной формой искусственной длинной линии, выполненной на петлеобразном каркасе, является тороидальный соленоид, в котором индуцируемое им поле сосредотачивается внутри тора, а поле рассеивания снаружи практически отсутствует. Следует отметить, что отклонение от идеальной формы тора все же приводит к некоторому наличию полей рассеивания, но тем не менее они на несколько порядков меньше, чем у простого цилиндрического соленоида. Таким образом, магнитное поле в петлеобразном соленоиде сосредоточено внутри него (см. фиг. 1) и так как этот соленоид своими концами в разрыве стыкуется с торцами цилиндрического конденсатора, являющегося генератором озона, оно проходит и через зону "тихого" разряда, где образуется озон, причем силовые линии магнитного поля параллельны поверхности электродов. Во время существования высокочастотного "тихого" разряда имеет место направленное движение заряженных частиц (электронов, ионов) в радиальных направлениях и коаксиальном конденсаторе, так как в этом случае силовые линии напряженности электрического поля направлены радиально. На заряженные частицы, движущиеся в электрическом и магнитном полях действует сила Лоренца [3]

где e заряд частицы;
напряженность электрического тока;
c скорость света;
скорость частицы;
магнитная индукция;
μo- магнитная постоянная;
напряженность магнитного поля.

Под действием электрического поля заряженные частицы, образующиеся в плазме разряда, приобретают скорость , вектор которой в зависимости от заряда частицы направлен радиально либо к внутреннему электроду, либо к внешнему электроду в коаксиальном генераторе озона. Под действием же магнитного поля на частицу начинает действовать сила, ортогональная как вектору электрического поля, так и вектору магнитного поля. Под действием этой силы траектория движения частиц искривляется, причем радиус кривизны зависит от напряженности электрического поля , напряженности магнитного поля , заряда частицы e, массы частицы m. Предположим, что в генераторе озона имеется какая-либо неоднородность, которая выражается в механической неоднородности поверхности реакционной зоны (шероховатость, отклонение от коаксиальности, флуктуация толщины диэлектрического барьера или отклонения в неоднородности диэлектрических свойств его материала), которая приводит к увеличению плотности горения плазмы в районе этой неоднородности. Этот участок генератора имеет меньшее электрическое удельное сопротивление по сравнению с другими участками поверхности электродов генератора озона и обладает большей плотностью тока.

Такое явление имеет два отрицательных момента: во-первых, этот участок как бы шунтирует своим меньшим удельным сопротивлением остальные участки поверхности электродов, снижая интенсивность плазмы на них и в конечном итоге, снижая выход озона, а во-вторых, более интенсивный узкий пучок плазмы в одном из участков поверхности диэлектрического барьера приводит к быстрому электрическому пробою на этом участке и в конечном итоге к выходу из строя генератора озона.

Наличие же магнитного поля в реакционной зоне приводит к искривлению траектории движения заряженных частиц, причем различные частицы, обладающие различными зарядами и различными массами, будут иметь различные радиусы кривизны своих траекторий. Под действием этого эффекта узкий пучок плазмы с большой плотностью тока, возникающей под влиянием неоднородности, размывается, что приводит к более однородному распределению плазмы по поверхности электродов. В конечном итоге это приводит к повышению надежности генератора озона, т.к. резко снижается вероятность электрического пробоя диэлектрического барьера в местах неоднородностей, а также к увеличению коэффициента полезного действия, т.к. увеличивается однородность плазмы, а следовательно и выход озона.

На фиг. 1 приведена схема высокочастотного озонатора; на фиг. 2 разрез А-А на фиг.1.

Высокочастотный озонатор содержит высокочастотный источник питания 1, искусственную длинную линию 2, выполненную на диэлектрическом каркасе в виде разомкнутой петли, концы которого стыкуются с торцами коаксиального генератора озона 3, содержащего внутренний электрод 4, снабженный диэлектрическим барьером 5, и высоковольтный конденсатор 6, подключенный параллельно генератору озона 3.

Устройство работает следующим образом. Источник питания 1 генерирует высокочастотные электрические колебания, которые подаются на спиральную искусственную длинную линию 2, выполненную на диэлектрическом каркасе в виде разомкнутой петли, концы которого стыкуются с торцами коаксиального генератора озона 3, и усиленные на длинной линии 2 до необходимой величины напряжения поступают на внутренний электрод 4 генератора озона 3, снабженного диэлектрическим барьером 5, и на высокочастотный конденсатор 6, а внешний электрод 7 генератора озона 3 заземлен.

Преимуществом предлагаемого устройства является возможность увеличения надежности и коэффициента полезного действия высокочастотного озонатора путем увеличения однородности горения плазмы в генераторе озона и снижения полей рассеивания в искусственной длинной линии, что позволит осуществлять производство озона с меньшими экономическими затратами.

Похожие патенты RU2095307C1

название год авторы номер документа
РАЗРЯДНАЯ КАМЕРА ОЗОНАТОРА 1996
  • Буранов С.Н.
  • Горохов В.В.
  • Карелин В.И.
  • Репин П.Б.
RU2101227C1
КАМЕРА БАРЬЕРНОГО РАЗРЯДА 2006
  • Дубинов Александр Евгеньевич
  • Макарова Нина Николаевна
  • Селемир Виктор Дмитриевич
RU2333886C2
ПОРТАТИВНЫЙ ОЗОНАТОР ВОЗДУХА 1997
  • Парфенов Б.Г.
  • Сафронов А.Я.
  • Семенов В.А.
  • Дульдиер В.Н.
  • Бухаров Ю.В.
RU2139239C1
ЭЛЕКТРОДНАЯ СИСТЕМА ГЕНЕРАТОРА ОЗОНА 2007
  • Губарев Георгий Геннадиевич
  • Шпитальный Николай Афанасьевич
RU2381989C2
РАЗРЯДНАЯ КАМЕРА ОЗОНАТОРА 1995
  • Буранов С.Н.
  • Горохов В.В.
  • Карелин В.И.
  • Репин П.Б.
RU2092432C1
ВЫСОКОЧАСТОТНЫЙ ОЗОНАТОР 1993
  • Безруких Е.Г.
  • Долгополов Б.Б.
  • Лупинин В.К.
  • Ширяев А.В.
RU2107022C1
ЦИКЛОТРОННЫЙ ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ 2014
  • Афанасьев Сергей Михайлович
RU2578551C2
ВОЗДУШНЫЙ ИОНИЗАТОР 2008
  • Соколов Владимир Феликсович
RU2598098C2
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ В ВАКУУМЕ 1999
  • Колпаков А.Я.
  • Инкин В.Н.
  • Кирпиленко Г.Г.
RU2186151C2
ЦИКЛОТРОННЫЙ ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ 2012
  • Афанасьев Сергей Михайлович
RU2517004C2

Иллюстрации к изобретению RU 2 095 307 C1

Реферат патента 1997 года ВЫСОКОЧАСТОТНЫЙ ОЗОНАТОР

Изобретение относится к получению озона. Высокочастотный озонатор, содержащий высокочастотный источник питания и генератор озона, снабжен высоковольтным конденсатором, подключенным параллельно генератору озона, выполненному в виде конденсатора с диэлектрическим барьером, а искусственная длинная линия выполнена в виде спирали, намотанной на петлеобразном разомкнутом каркасе, между торцами которого расположен генератор озона. 2 ил.

Формула изобретения RU 2 095 307 C1

Высокочастотный озонатор, содержащий высокочастотный источник питания и генератор озона, отличающийся тем, что он снабжен высоковольтным конденсатором, подключенным параллельно генератору озона, выполненному в виде конденсатора с диэлектрическим барьером, и искусственной длинной линией, выполненной в виде спирали, намотанной на петлеобразном разомкнутом каркасе, между торцами которого расположен генератор озона.

Документы, цитированные в отчете о поиске Патент 1997 года RU2095307C1

Устройство питания генератора озона 1980
  • Парамонов Анатолий Матвеевич
  • Воронин Михаил Ильич
  • Муляр Олег Александрович
SU984994A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 095 307 C1

Авторы

Безруких Е.Г.

Долгополов Б.Б.

Даты

1997-11-10Публикация

1991-12-13Подача