СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА БЕТА-КАРОТИНА, ДИСПЕРГИРУЕМОГО В ВОДЕ Российский патент 1998 года по МПК A61K31/66 A61K31/66 A61K47/06 A61K47/00 A61K31/01 

Описание патента на изобретение RU2102073C1

Изобретение относится к области медицинской промышленности, а именно, к способам получения диспергируемых в воде препаратов бета-каротина для лечения различных заболеваний.

Известны способы получения диспергируемых в воде препаратов бета-каротина путем быстрого нагревания бета-каротина в присутствии поверхностно-активных веществ и антиокислителей до температуры 120-180oС, быстрого охлаждения раствора до температуры 80-100oС и дальнейшего охлаждения путем добавления воды [1,2]
Недостатками указанных способов являются следующие: многостадийность процесса, получение солюбилизатов бета-каротина в воде, что затрудняет их хранение в связи с быстрой инактивацией бета-каротина, необходимость быстрого нагрева до температуры 120-180oС и необходимость быстрого охлаждения раствора, что связано с большими затратами энергии и необходимостью использования специальных устройств для нагрева и охлаждения. Полученные по этим способам препараты бета-каротина содержат большое количество поверхностно-активных веществ, что затрудняет их использование для людей и животных в связи с канцерогенными и мутагенными свойствами поверхностно-активных веществ.

Прототипом изобретения является способ получения препарата бета-каротина, диспергируемого в воде путем смешивания исходных компонентов в две стадии до получения порошка целевого продукта и последующей его досушки до влажности 0,2-0,3% [3] При этом на первой стадии смешивают бета-каротин с жидким пищевым маслом в соотношении 1:(0,11-2,4) и стабилизатором до получения пастообразной массы. На второй стадии пастообразную массу интенсивно перемешивают с наполнителем, взятым в количестве 6,6•102-200•102 и летучим органическим растворителем, взятым в количестве 1800-2300% к массе бета-каротина. При этом в качестве наполнителя используют лактозу, либо смесь из лактозы и галактозы в соотношении 1:(1-19).

Предлагаемый способ также является трудоемким, предусматривает использование пищевого масла, стабилизатора, наполнителя и органического растворителя. Способ является многостадийным, так как предусматривает 3 стадии: первое смешивание, второе смешивание и третью стадию сушки для удаления органического растворителя. Указанный способ позволяет получать препараты бета-каротина, обладающие низкой биодоступностью, так как бета-каротин представлен в препарате в виде мелких кристаллов, а не в виде молекул. Препараты бета-каротина, полученные в аналоге, образуют малостойкие водные дисперсии и быстро инактивируются при хранении в условиях комнатной температуры, что затрудняет их использование в технологических процессах и в качестве лекарственных препаратов.

Задачей изобретения является упрощение способа получения препарата бета-каротина, диспергируемого в воде, увеличение эффективности получаемого препарата при использовании для лечения различных заболеваний и повышения его технологичности за счет повышенной стабильности препарата и его растворов при хранении.

Поставленная задача решается путем смешивания кристаллического бета-каротина, фосфолипидов, органического растворителя и сухого порошкообразного наполнителя и удаления летучего органического растворителя в условиях вакуума при постоянном перемешивании. В результате получают сухой порошкообразный препарат бета-каротина, хорошо диспергируемый в воде, стабильный при хранении, эффективный при лечении различных заболеваний и образующий стойкие водные растворы не теряющие активность в течение длительного хранения в условиях положительной температуры и на свету.

В качестве фосфолипидов могут быть использованы отдельные фосфолипиды, смеси фосфолипидов и суммарные фосфолипиды, полученные из растительного, животного или микробиологического сырья.

В качестве органических растворителей могут быть использованы хлороформ, гексан, эфир, бензол и другие растворители, в которых могут быть растворены фосфолипиды и бета-каротин.

В качестве сухих порошкообразных наполнителей могут быть использованы сахара (сорбит, ксилит, маннит и другие), соли (поваренная соль и другие), полисахариды (декстраны и другие), полиэтиленгликоли, поливинилпирролидон и другие вещества.

Существо изобретения иллюстрируется следующими примерами.

Пример 1 (по прототипу).

Первая стадия: смешали 0,25 г кристаллического синтетического бета-каротина и 10 мг бутилоксианизола с 0,5 мл подсолнечного масла до получения пастообразной массы.

Вторая стадия: полученную пастообразную массу смешали с 9,25 г лактозы и 5 мл хлороформа.

Третья стадия: полученный порошок досушили в условиях вакуума в течение одного часа до влажности 0,3% Получили 10,0 г сухого грубодисперсного порошка с содержанием бета-каротина 25+5 мг/г порошка.

Пример 2 (по предлагаемому способу).

Первая стадия: смешали 0,25 г кристаллического синтетического бета-каротина, 2,0 г суммарных фосфолипидов мозга крупного рогатого скота, 7,75 г сорбита и 25,0 мл хлороформа.

Вторая стадия: полученную смесь высушили в условиях вакуума при перемешивании в течение одного часа до влажности 0,5±0,1% Получили 10,0 г сухого мелкодисперсного порошка с содержанием бета-каротина 25±2o мг/г порошка.

Пример 3. Исследование растворимости препаратов бета-каротина в воде.

Получили вододиспергируемые препараты бета-каротина согласно условиям примеров 1 и 2.

По 1,0 г каждого препарата поместили в 10 мл дистиллированной воды и перемешали в течение 5 мин с помощью магнитной мешалки при температурe 20±2oС. Оба препарата хорошо растворились в воде с образованием красновато-желтых растворов.

Данные, представленные в примерах 1 и 2 показывают, что для получения препарата бета-каротина по прототипу, требуется 3 стадии, а для получения препарата бета-каротина по предлагаемому способу 2 стадии. В обоих случаях получили препарат, содержащий 25 мг бета-каротина в 1 г препарата.

Пример 4. Исследование стабильности препаратов бета-каротина при хранении.

Получили препараты бета-каротина согласно условиям примеров 1 и 2.

Препараты поместили на хранение в условиях температуры плюс 20±2oС и плюс 4±2oС. Определили содержание бета-каротина в препаратах через 6 и 12 месяцев хранения. Результаты исследования представлены в табл.1.

Данные табл.1 показывают, что вододиспергируемый препарат бета-каротина, полученный по предлагаемому способу, сохраняет свою активность в течение 1 года (срок наблюдения) при хранении в условиях температуры плюс 20±2oС и плюс 4±2oС.

Препарат бета-каротина, полученный по прототипу, не пригоден к длительному хранению в условиях положительных температур плюс 20±2oС и плюс 4±2oС и теряет 50-80% своей активности через 6 месяцев хранения и практически инактивируется через 12 месяцев хранения. Сохраняемость препарата бета-каротина, полученного по прототипу, соответствует сохраняемости исходного кристаллического бета-каротина, взятого для получения препарата.

Пример 5. Исследование эффективности диспергируемого в воде препарата бета-каротина при летальном токсикозе, вызванном цитостатическим препаратом 5-фторурацилом.

Известно, что осложнения, наблюдающиеся при лечении онкологических заболеваний цитостатиками, равноценны, а иногда превосходят по тяжести клинические проявления основного заболевания. Поэтому особое значение приобретает поиск средств, направленных на снижение тяжести осложнений химиотерапии. Одним из перспективных направлений такого поиска является изучение применения с этой целью бета-каротина, который обладает радиозащитными свойствами и снижает гибель экспериментальных животных при летальной дозе облучения [4,5]
Изучено влияние перорального применения препаратов бета-каротина, полученных согласно условиям примеров 1 и 2 на течение летального токсикоза, вызванного 5-фторурацилом.

В опытах использовали белых мышей весом 14-18 г.

5-фторурацил (фирмы Serva) разводили физиологическим раствором до конечной концентрации 10 мг/мл. Раствор цитостатика вводили каждой мыши внутрибрюшинно в дозе 300 мг на кг веса тела. Испытания препаратов проводили по следующей схеме: за 7 сут до внутрибрюшинной инъекции 5-фторурацила мышам вводили ежедневно перорально бета-каротин в дозах 0,5 и 5,0 мг/кг веса - препарат, полученный по прототипу и в дозе 0,5 мг/кг веса препарат, полученный по предлагаемому способу. После введения цитостатика введение препаратов бета-каротина продолжали в течение 3 сут. Контрольной группе животных 5-фторурацил вводили на фоне стандартного рациона.

Кроме того, в качестве дополнительного контроля наблюдали группу здоровых интактных животных, получавших только стандартный рацион. Учет павших животных проводили на 7 и 14 сут после введения цитостатика. Результаты исследований приведены в табл.2.

Результаты исследований, представленные в табл.2, свидетельствуют, что введение 5-фторурацила в дозе 300 мг/кг веса контрольной группе животных приводит к 100% их гибели на первом сроке наблюдения (7 сут). В то же время в опытной группе мышей, получавших водорастворимый препарат бета-каротина, полученный по прототипу в дозе 5 мг/кг, к 7 дню погибло 9 из 30 животных, взятых в опыт (выживаемость 70%). К 14 дню наблюдения выживаемость мышей в этой группе составила 60%
Введение препарата бета-каротина, полученного по прототипу в дозе 0,5 мг/кг, не оказывало влияния на выживаемость мышей, получивших летальные дозы цитостатика и все животные в этой группе, как и в контроле, погибли к 7 дню наблюдения.

Наибольшей защитной эффективностью обладал препарат бета-каротина, полученный по предлагаемому способу. При использовании этого препарата в дозе 0,5 мг/кг выживаемость мышей к 7 и 14 дню после введения цитостатика составила 90% и 60% соответственно.

Полученные данные позволяют сделать вывод о высокой биодоступности препарата бета-каротина, полученного по предлагаемому способу. Эффективная доза этого препарата при лечении летального токсикоза, вызванного цитостатиком, была в 10 раз ниже, чем препарата бета-каротина, полученного по прототипу.

Пример 6. Исследование эффективности препаратов бета-каротина при сублетальном токсикозе, вызванном цитостатическим препаратом 5-фторурацилом.

Изучено влияние перорального применения препаратов бета-каротина, полученных по прототипу (пример 1) и по предлагаемому способу (пример 2) на содержание лейкоцитов в крови мышей после введения 5-фторурацила. Для этого цитостатик вводили внутрибрюшинно в субтоксической дозе 150 мг/кг, которая традиционно используется при изучении действия цитостатиков на гепопоэз [6] Препараты бета-каротина применяли аналогично условиям примера 3. Количество лейкоцитов в крови животных подсчитывали после окраски мазков по Романовскому-Гимзе. Результаты исследования представлены в табл. 3.

Данные, представленные в табл. 3 показывают, что у мышей контрольной группы, получивших субтоксическую дозу 5-фторурацила, на 7 сутки развилась лейкопения и количество лейкоцитов составляло 3,3±0,6•109/л при исходном значении 9,6±1,2•109/л. На 14 день после инъекции цитостатика уровень лейкоцитов достигал исходного значения.

В опытных группах мышей, получавших препарат бета-каротина, изготовленный по прототипу в дозе 5,0 мг/кг и получавших препарат бета-каротина, изготовленный по предлагаемому способу в дозе 0,5 мг/кг, уровень лейкоцитов через 7 сут после введения цитостатика не снижался и был близок к исходным значениям. В группе животных, получавших препарат бета-каротина, изготовленный по прототипу, в дозе 0,5 мг/кг, на 7 сут после введения цитостатика развилась лейкопения и количество лейкоцитов составляло 38±14% от исходного количества.

Полученные данные свидетельствуют о том, что эффективная доза препарата бета-каротина, полученного по предлагаемому способу, в 10 раз ниже, чем эффективная доза препарата бета-каротина, полученного по прототипу при лечении лейкопений, вызванных субтоксическими дозами цитостатика 5-фторурацила.

Пример 7. Исследование эффективности препаратов бета-каротина на течение экспериментальной гриппозной инфекции.

Исследована эффективность перорального введения препаратов бета-каротина, полученных по прототипу и по предлагаемому способу на течение экспериментальной гриппозной инфекции. Опыты проводили на белых беспородных мышах. Препараты бета-каротина вводили мышам перорально в течение 5 дней в дозах 0,004 мг и 0,02 мг ежедневно (0,02 мг и 0,1 мг на курс, соответственно).

Для воспроизведения летальной гриппозной инфекции использован вирус гриппа A/Aichi /2/68(H3N2). Животных инфицировали интраназально в дозах 1 ЛД50 и 10 ЛД50 не менее чем за 1 ч после последнего введения препаратов бета-каротина. Степень профилактической эффективности препаратов оценивали по количеству погибших животных, средней продолжительности жизни погибших животных, по степени защиты и индексу защиты животных [7,8]
Результаты влияния перорального введения препаратов бета-каротина на течение экспериментальной гриппозной инфекции представлены в табл.4.

Данные табл.4 показывают, что пероральное применение препарата бета-каротина, изготовленного по предлагаемому способу, в курсовой дозе 0,1 мг на животное, проявляет выраженную защиту мышей от летальной гриппозной инфекции, обеспечивая выживаемость 80±13% животных от 50% смертельной дозы вируса гриппа и 50±16% животных от десяти 50% смертельных доз. При этом коэффициент защиты мышей составил 2,5 и 1,8 и индекс защиты 60,0% и 44,4% соответственно при введении одной и десяти 50% летальных доз вируса гриппа. При этом наблюдалось также увеличение средней продолжительности жизни погибших животных от 8,8-9,1 сут в контрольной группе до 10,5-11,2 сут в группе животных, получавших бета-каротин, изготовленный по предлагаемому способу. Этот же препарат, введенный в курсовой дозе 0,02 мг, слабо защищал животных от летальной гриппозной инфекции (индекс защиты 0-22,5%).

Препарат бета-каротина, изготовленный по прототипу и используемый в курсовых дозах 0,1 мг и 0,02 мг на животное, не обеспечивал защиты от летальной гриппозной инфекции (индекс защиты 0).

Пример 8. Исследование стойкости водных растворов диспергируемых в воде препаратов бета-каротина при хранении в условиях комнатной температуры и естественного освещения.

Препараты бета-каротина, полученные в условиях примеров 1 и растворили в дистиллированной воде, смешав 10 г порошка с 90 мл воды. Препараты разлили в пенициллиновые флаконы по 10,0 мл.

Определили содержание бета-каротина в водных растворах сразу после растворения и через 5, 10 и 15 сут хранения в условиях комнатной температуры и естественного освещения. Результаты исследования представлены в табл.5.

Данные табл.5 показывают, что после растворения в воде препарат бета-каротина, изготовленный по прототипу, согласно условиям примера 1 быстро теряет активность при хранении в условиях комнатной температуры и через 15 суток раствор становится бесцветным и бета-каротин в нем не определяется. Препарат бета-каротина, изготовленный согласно предлагаемому способу, после растворения в воде не теряет своей активности в течение 15 дней в условиях комнатной температуры и естественного освещения.

Пример 9 (по предлагаемому способу). Влияние состава фосфолипидов на качество диспергируемого в воде препарата бета-каротина.

Получили 4 образца диспергируемых в воде препаратов бета-каротина согласно условиям примера 2 с использованием следующих фосфолипидов:
1. Яичный лецитин (препарат 1).

2. Лецитин, холестерин и дицетилфосфат в молярном соотношении 10:2:1 (препарат 2).

3. Суммарные фосфолипиды из бобов сои (препарат 3).

4. Суммарные фосфолипиды из микроорганизмов Е.coli штамм М-17 (препарат 4).

Определили содержание бета-каротина в полученных препаратах сразу после изготовления и через 15 дней хранения водных растворов согласно условиям примера 8. Результаты исследования представлены в табл.6.

Данные табл. 6 показывают, что состав фосфолипидов не оказывает влияния на качество диспергируемых в воде препаратов бета-каротина, получаемых по предлагаемому способу. Для получения препаратов могут быть использованы отдельные фосфолипиды,искусственные смеси фосфолипидов,суммарные фосфолипиды из растительного и микробиологического сырья. Кроме этого, данные примера 2 показывают, что для получения препарата могут быть использованы суммарные фосфолипиды из животного сырья.

Пример 10 (по предлагаемому способу). Влияние концентрации фосфолипидов на качество диспергируемого в воде препарата бета-каротина.

Получили 4 образца диспергируемых в воде препаратов бета-каротина согласно условиям примера 2 с использованием следующих концентраций фосфолипидов по отношению к органическому растворителю: 4, 8, 16 и 32% (вес/объем). Определили содержание бета-каротина в полученных препаратах сразу после изготовления. Растворили препараты в воде и определили содержание бета-каротина через 15 дней хранения водных растворов согласно условиям примера 8. Результаты исследования представлены в табл.7.

Данные табл. 7 показывают, что при использовании любых концентраций фосфолипидов в пределах их растворимости в 2,5% растворе бета-каротина в хлороформе могут быть получены кондиционные препараты диспергируемого в воде препарата бета-каротина.

Пример 11 (по предлагаемому способу). Влияние концентрации бета-каротина на качество диспергируемого в воде препарата бета-каротина.

Получили 4 образца диспергируемых в воде препаратов бета-каротина согласно условиям примера 2 с использованием 8% раствора (вес/объем) фосфолипидов в органическом растворителе и следующих концентраций бета-каротина по отношению к органическому растворителю: 2, 4, 8, 12 (вес/объем); 12% (вес/объем) бета-каротина является пределом его растворимости в 8% (вес/объем) растворе фосфолипидов в хлороформе при температуре плюс 20Б198ЮС. Определили содержание бета-каротина в полученных препаратах сразу после изготовления. Растворили препараты в воде и определили содержание бета-каротина в водных растворах согласно условиям примера 8. Результаты исследования представлены в табл.8.

Данные табл. 8 показывают, что при использовании любых концентраций бета-каротина в пределах его растворимости в 8% растворе фосфолипидов в хлороформе (то есть до 12% включительно) могут быть получены кондиционные препараты диспергируемого в воде препарата бета-каротина с содержанием бета-каротина в сухом препарате в концентрациях 5, 10, 20 и 30% (вес/вес).

Использование концентрации бета-каротина выше пределов его растворимости в растворе фосфолипидов в органическом растворителе нецелесообразно, так как бета-каротин кристаллизуется и выпадает в осадок. Бета-каротин в кристаллической форме обладает низкой биодоступностью и малоактивен.

Данные примеров 10 и 11 показывают, что предлагаемый способ позволяет получать кондиционные препараты диспергируемого в воде бета-каротина при использовании фосфолипидов и бета-каротина в концентрациях, обеспечивающих их совместную растворимость в органическом растворителе при заданной температуре. При температуре плюс 20oС (вес/объем) является верхним пределом растворимости суммарных фосфолипидов головного мозга крупного рогатого скота в хлороформе, в котором растворен 1% (вес/объем) бета-каротина. При этой же температуре в 8% (вес/объем) растворе суммарных фосфолипидов головного мозга может быть растворено 12% (вес/объем) бета-каротина. Использование таких концентрацией бета-каротина и фосфолипидов позволяет получать диспергируемые в воде сухие препараты с содержанием бета-каротина до 30% (вес/вес).

Пример 12. Влияние сухих порошкообразных наполнителей на качество диспергируемого в воде препарата бета-каротина.

Получили 8 образцов диспергируемого в воде препарата бета-каротина согласно условиям примера 2 с использованием следующих порошкообразных наполнителей: сорбит (препарат 1), ксилит (препарат 2), маннит (препарат 3), поваренная соль (препарат 4), декстран Т-20 (препарат 5), полиэтиленгликоль м.в. 20000 (препарат 6), поливинилпирролидон (препарат 7), поливиниловый спирт (препарат 8).

Определили содержание бета-каротина в препаратах сразу после их получения и после хранения в течение 15 дней хранения водных растворов согласно условиям примера 8.

Результаты исследования представлены в табл. 9.

Данные табл. 9 показывают, что при использовании различных сухих порошкообразных наполнителей, таких как сорбит, ксилит, маннит, поваренная соль, декстран, полиэтиленгликоль, поливиниловый спирт, поливинилпирролидон и других не растворимых в хлороформе порошков, получаются кондиционные препараты бета-каротина, хорошо диспергируемые в воде.

Таким образом, данные, представленные в примерах 1-12, показывают, что предлагаемый способ позволяет легко получать вододиспергируемые препараты бета-каротина, пригодные для длительного хранения и обладающие высокой эффективностью при применении для лечения и профилактики различных заболеваний.

Литература
1. Патент N 4031094, Германия.

2. Патент N 228528, ЧССР.

3. Патент N 2024505, Россия.

4. Лемберг В.К. Рогачева С.А. Влияние обогащения рациона мышей СВА синтетическим бета-каротином на их выживаемость при гамма-облучении. Радиобиология, 1990, вып.6. с.843-844.

5. Seifter E. Retura D. Padaver J. Morbidity and Mortality reduction by supplemental vitamin A or beta-carote- ne in CBA mice given total body -radiation. J.Nat. Cancer Inst. 1984, v.73, p.1167-177.

6. Lerner C. Harrison D. 5-tluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp. Hematol. 1990, v.18, p.119-118.

7. Методы испытания и оценки противовирусной активности химических соединений в отношении вируса гриппа. Л. 1977.

8. Чижов И. П. Ершов Ф.И. Индулен М.К. Основы экспериментальной химиотерапии вирусных инфекций. Рига "Зинатие", 1988.

Похожие патенты RU2102073C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЛИПОСОМАЛЬНЫХ ПРЕПАРАТОВ 1998
  • Автушенко С.С.
RU2130771C1
КОСМЕТИЧЕСКАЯ КОМПОЗИЦИЯ 1995
  • Автушенко Сергей Сергеевич
  • Сорокин Евгений Михайлович
RU2116778C1
ВИТАМИННАЯ ДОБАВКА 1993
  • Автушенко Сергей Сергеевич
  • Токарев Владимир Петрович
RU2080858C1
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, ОБЛАДАЮЩАЯ ПРОТИВООПУХОЛЕВЫМ ДЕЙСТВИЕМ СО СНИЖЕННЫМИ ПОБОЧНЫМИ ЭФФЕКТАМИ, СОДЕРЖАЩАЯ ПРОТИВООПУХОЛЕВЫЙ АГЕНТ И ПРОИЗВОДНОЕ ГИДРОКСАМОВОЙ КИСЛОТЫ 1998
  • Шумеги Балаж
RU2214238C2
Рекомбинантный вакцинный препарат пролонгированного действия для профилактики чумы у млекопитающих и человека и способ его получения 2015
  • Дятлов Иван Алексеевич
  • Сомов Алексей Николаевич
  • Дунайцев Игорь Анатольевич
  • Копылов Павел Христофорович
  • Иванов Сергей Андреевич
  • Борзилов Александр Иосифович
  • Анисимов Андрей Павлович
  • Храмов Михаил Владимирович
RU2671525C2
ПРОТИВОМИКРОБНЫЕ СРЕДСТВА НА ОСНОВЕ БЕТА-ГЛЮКАНОВ, СПОСОБЫ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2020
  • Нестеренко Владимир Георгиевич
  • Суслов Анатолий Петрович
  • Цырульников Сергей Александрович
  • Киселёва Ирина Владиславовна
  • Коноплёва Мария Вениаминовна
  • Бляхер Мария Сергеевна
  • Кузнецов Виталий Владимирович
  • Шпорта Елена Юрьевна
RU2746504C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОЧУВСТВИТЕЛЬНЫХ ЛИПОСОМ 2007
  • Федущак Таисия Александровна
  • Дамбаев Георгий Церенович
  • Антипов Сергей Анатольевич
  • Хлусов Игорь Альбертович
  • Ермаков Анатолий Егорович
  • Уймин Михаил Александрович
  • Итин Воля Исаевич
RU2357724C1
ПРОТИВООПУХОЛЕВЫЕ И АНТИВИРУСНЫЕ ПЕПТИДЫ 2004
  • Черныш Сергей Иванович
  • Беккер Герман Петрович
RU2267496C2
ГИДРАТИРОВАННЫЕ N-ФУЛЛЕРЕН-АМИНОКИСЛОТЫ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ФАРМАЦЕВТИЧЕСКИЕ КОМПОЗИЦИИ НА ИХ ОСНОВЕ 2011
  • Раснецов Лев Давидович
  • Шварцман Яков Юделевич
  • Суворова Ольга Николаевна
RU2458046C1
ЭМУЛЬСИОННЫЙ ПРЕПАРАТ ДЛЯ ПРОФИЛАКТИКИ РЕСПИРАТОРНЫХ ВИРУСНЫХ ИНФЕКЦИЙ 2001
  • Сафатов А.С.
  • Шишкина Л.Н.
  • Порываев В.Д.
  • Болдырев А.Н.
  • Булычев Л.Е.
  • Сергеев А.Н.
  • Пьянков О.В.
  • Жуков В.А.
  • Рыжиков А.Б.
  • Буряк Г.А.
  • Кукина Т.П.
  • Ралдугин В.А.
  • Толстиков Г.А.
RU2189231C1

Иллюстрации к изобретению RU 2 102 073 C1

Реферат патента 1998 года СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА БЕТА-КАРОТИНА, ДИСПЕРГИРУЕМОГО В ВОДЕ

Изобретение относится к области медицинской промышленности, а именно к способам получения диспергируемых в воде препаратов бета-каротина. Сущность изобретения: осуществляют смешивание кристаллического бета-каротина, сухого порошкообразного наполнителя, фосфолипидов и летучего органического растворителя с последующим удалением растворителя в условиях вакуума при постоянном перемешивании до получения сухого мелкодисперсного порошка. Технический результат: упрощение способа, повышение стабильности препарата. 4 з. п.ф-лы, 9 табл.

Формула изобретения RU 2 102 073 C1

1. Способ получения препарата бета-каротина, диспергируемого в воде, включающий смешивание каротина с жиром, наполнителем и летучим органическим растворителем с последующим удалением органического растворителя, отличающийся тем, что в качестве каротина используют кристаллический бета-каротин, в качестве жира фосфолипиды, наполнитель берут сухой порошкообразный и удаление органического растворителя производят в условиях вакуума при постоянном перемешивании до получения мелкодисперсного порошкообразного продукта с остаточной влажностью (0,5 ± 0,1)%
2. Способ по п.1, отличающийся тем, что в качестве органического растворителя используют растворитель, в котором растворяются фосфолипиды и бета-каротин.
3. Способ по п.1, отличающийся тем, что в качестве наполнителя используют сахара сорбит или ксилит, или маннит, или поваренную соль, или декстраны, или полиэтиленгликоль, или поливинилпирролидон. 4. Способ по п.1, отличающийся тем, что в качестве фосфолипидов используют отдельные фосфолипиды или искусственные смеси форсфолипидов, или суммарные фосфолипиды, полученные из растительного, или животного, или микробиологического сырья. 5. Способ по п.1, отличающийся тем, что бета-каротин и фосфолипиды берут в количествах, обеспечивающих их совместную растворимость в органическом растворителе.

Документы, цитированные в отчете о поиске Патент 1998 года RU2102073C1

RU, патент, 2024505, кл
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1

RU 2 102 073 C1

Авторы

Автушенко С.С.

Сорокин Е.М.

Смирнова Л.Ф.

Токарев В.П.

Даты

1998-01-20Публикация

1996-03-06Подача