Изобретение относится к области неразрушающего контроля технологических процессов в строительной индустрии и может быть использовано для получения данных о параметрах предварительно напряженных арматурных элементов (стержней, канатов и т.д.) при изготовлении железобетонных конструкций, в частности, для определения требуемого удлинения арматурного элемента, измерения напряжений в арматурном элементе и корректировки его длины.
Известно устройство для контроля напряжения в арматурных элементах, содержащее датчик колебаний, установленный на арматурном стержне, согласующее устройство, усилитель, управляемый фильтр, два формирователя, счетчик, делитель частоты, генератор импульсов, компаратор, источник опорного напряжения и блок обработки данных (см. а.с. СССР N 1507940 "Устройство для контроля напряжения в арматурных элементах при производстве железобетонных изделий", МКЛ-4: E 04 G 21/12, G 05 D 15/01, заявл. 01.09. 87 г., опубл. 15.09.89 г.).
Данное устройство позволяет измерять величину напряжения в арматурных элементах, не давая возможности получить рекомендации по ее корректировке при отклонении этой величины от проектной. Это говорит о неудовлетворительных функциональных возможностях устройства и, как следствие, о низкой производительности контроля.
Таким образом, недостатком описанного устройства является низкая производительность контроля, обусловленная узким функциональным диапазоном устройства.
Наиболее близким по технической сущности к заявляемому техническому решению является устройство для измерения напряжения в арматуре железобетонных конструкций, описанное в одноименном а. с. СССР N 1353878, МКЛ 4: E 04 G 21/12, G 05 D 15/01, заявл. 06.06.86г., опубл. 23.11.87г. и выбранным в качестве прототипа.
Известное устройство содержит датчик колебаний, подключенный к входу усилителя, выход которого соединен с входом выпрямителя и с первым входом компаратора, другой вход которого соединен с выходом выпрямителя, а выход компаратора подключен к первому входу счетчика, а также дешифратор, индикатор и элемент "И", подключенный к генератору.
Кроме того, устройство содержит делитель частоты, цифровой фильтр, формирователь цифрового кода, коммутатор, пороговый цифровой фильтр, логический элемент "И", тактовый распределитель, мультиплексор и узел сопряжения.
Прототип имеет тот же недостаток, что и аналог - низкую производительность контроля.
Это обусловлено теми же причинами - в процессе измерения данное устройство позволяет получить только информацию о величине напряжения в арматурном элементе.
Однако, при отклонении этой величины от проектного значения свыше нормативного допуска, когда возникает необходимость в изменении длины арматурного элемента, известное устройство не позволяет получить информацию о величине поправки, на которую требуется удлинить или укоротить арматурный элемент для обеспечения проектной величины напряжения в нем. В этом случае операция по корректировке длины арматурного элемента осуществляется опытным путем, что влечет за собой дополнительные трудозатраты, а, следовательно, и снижение производительности контроля.
Задачей заявляемого изобретения является повышение производительности контроля.
Техническим результатом, позволяющим решить поставленную задачу, является расширение функциональных возможностей устройства, за счет увеличения числа контролируемых параметров арматурных элементов, получаемых в процессе одного цикла измерения.
Поставленная задача решается за счет того, что известное устройство для измерения параметров предварительно напряженных арматурных элементов железобетонных конструкций, содержащем датчик колебаний, подключенный к входу усилителя, выход которого соединен с входом выпрямителя и с первым входом компаратора, другой вход которого соединен с выходом выпрямителя, а выход компаратора подключен к первому входу счетчика, а также дешифратор, индикатор и элемент "И", подключенный к генератору, в отличие от прототипа, устройство снабжено реверсивным счетчиком и блоком управления и обработки данных, содержащим процессор, клавиатуру, постоянное запоминающее устройство программ (ПЗУ программ), оперативное запоминающее устройство (ОЗУ) и арифметическое логическое устройство (АЛУ), причем первый выход счетчика подключен к второму входу элемента "И", выход которого соединен с первым входом реверсивного счетчика, первый выход последнего соединен с первым входом ОЗУ, второй выход реверсивного счетчика подключен к первому входу процессора, второй, третий, четвертый и пятый входы которого соединены соответственно с кнопкой "ПУСК", вторым выходом счетчика, генератором и первым выходом клавиатуры, шестой вход процессора подключен к выходу ПЗУ программ, седьмой - к второму входу ОЗУ, восьмой - к первому выходу АЛУ, первый и второй входы которого соединены соответственно с выходом ПЗУ программ и выходом ОЗУ, а второй выход АЛУ соединен с входом дешифратора, выход которого подключен к индикатору, при этом первый, второй, третий, четвертый, пятый и шестой выходы процессора подключены соответственно к второму входу счетчика, к второму и третьему входам реверсивного счетчика, к входу ПЗУ программ, к третьему входу АЛУ, к третьему входу ОЗУ, четвертый вход которого соединен с вторым выходом клавиатуры.
Исследования, проведенные по источникам научно-технической информации, показали, что предлагаемое устройство неизвестно и его схемное решение не следует явным образом из изученного уровня техники, то есть соответствует критериям "новизна" и "изобретательский уровень".
Данное устройство может быть использовано на предприятиях строительной индустрии для осуществления контроля за параметрами предварительно напряженных арматурных элементов при изготовлении железобетонных конструкций. Устройство может быть изготовлено с помощью стандартных схемных элементов отечественного либо импортного производства, а, следовательно, соответствует критерию "промышленная применимость".
Предлагаемая совокупность существенных признаков сообщает заявляемому устройству новые свойства, позволяющие решить поставленную задачу - значительно повысить производительность контроля величины предварительного напряжения арматурных элементов.
Введение в устройство реверсивного счетчика и блока управления и обработки данных с подключением их к другим элементам схемы устройства, а также изменение связей и соединений других элементов устройства, как указано выше, позволяет в процессе одного цикла измерения не только определить величину напряжения в арматурном элементе, но и, при необходимости, получить сведения о дополнительных параметрах - о величине требуемого удлинения арматуры и о величине отклонения длины арматурного элемента от требуемого значения.
Заявляемое устройство сообщает достоверную информацию о том, на сколько и в какую сторону нужно изменить длину испытуемого арматурного элемента для получения проектной величины напряжения в нем, что позволяет оперативно и точно, т. е. с минимальными трудозатратами, провести операцию по корректировке данного параметра.
Таким образом, обеспечивается повышение производительности контроля за счет расширения функциональных возможностей устройства.
На фиг. 1 показана структурная схема устройства для измерения параметров предварительно напряженных арматурных элементов; на фиг. 2 - алгоритм работы устройства при измерении напряжений и определении величины коррекции длины арматурного элемента; на фиг. 3 - алгоритм работы устройства при определении требуемого удлинения арматурного элемента.
Устройство для измерения параметров предварительно напряженных арматурных элементов (на чертеже не показаны) железобетонных конструкций (см. фиг. 1) содержит датчик 1 колебаний, усилитель 2, выпрямитель 3 однополупериодный, компаратор 4, счетчик 5, генератор 6, элемент "И" 7, реверсивный счетчик 8, блок 9 управления и обработки данных, дешифратор 10 и индикатор 11.
Блок 9 управления и обработки данных содержит процессор 12 с клавиатурой 13, постоянное запоминающее устройство 14 программ (ПЗУ программ), оперативное запоминающее устройство 15 (ОЗУ) и арифметическое логическое устройство 16 (АЛУ).
Датчик 1 колебаний, усилитель 2, компаратор 4, счетчик 5 соединены последовательно. Выпрямитель 3 включен между усилителем 2 и компаратором 4.
Первый выход счетчика 5 соединен с вторым входом элемента "И" 7, первый вход которого подключен к выходу генератора 6, а выход элемента "И" 7 соединен с первым входом реверсивного счетчика 8, первый выход последнего соединен с первым входом ОЗУ 15.
Входы процессора 12 подключены соответственно: первый - к второму выходу реверсивного счетчика 8, второй - к кнопке "Пуск", третий - к второму выходу счетчика 5, четвертый - к выходу генератора 6, пятый - к первому выходу клавиатуры 13, шестой - к выходу ПЗУ 14 программ, седьмой - к второму входу ОЗУ 15, восьмой - к первому выходу АЛУ 16.
Выходы процессора 12 подключены соответственно: первый - к второму входу счетчика 5, второй и третий - к второму и третьему входам реверсивного счетчика 8, четвертый - к входу ПЗУ 14 программ, пятый - к третьему входу АЛУ 16, шестой - к третьему входу ОЗУ 15,
Первый и второй входы АЛУ 16 соединены соответственно с выходом ПЗУ 14 программ и выходом ОЗУ 15, а второй выход АЛУ 16 соединен с входом дешифратора 10, выход которого подключен к индикатору 11.
Второй выход клавиатуры 13 подключен к четвертому входу ОЗУ 15.
В связи с наличием большого количества входов и выходов у блоков устройства и для облегчения понимания его работы, на чертеже (фиг. 1) входы и выходы отдельных элементов устройства имеют самостоятельную нумерацию.
Назначение блоков, входящих в схему устройства для измерения параметров арматурных элементов железобетонных конструкций, традиционно и реализовать предлагаемое устройство можно на стандартной элементной базе.
Описание работы устройства
Устройство работает по принципу счета импульсов стабильной частоты, заполняющих один или несколько периодов колебаний арматуры. Первоначально с клавиатуры осуществляют ввод в ОЗУ 15 устройства значений длины контролируемого арматурного элемента l, его диаметра d, напряжения в арматурном элементе, заданного проектом σпр , класса прочности арматуры (см. фиг. 2).
По окончании ввода значений параметров арматуры с выхода 1 клавиатуры 13 на вход 5 процессора 12 поступает сигнал, после чего с выхода 4 процессора 12 в ПЗУ 14 программ поступают команда на ввод в АЛУ 16 формулы для расчета цифрового кода nnp. Одновременно с выхода 6 процессора 12 в ОЗУ 15 поступает команда на ввод в АЛУ 16 значений l и d.
АЛУ 16 производит вычисление цифрового кода по формуле:
где
nnp - цифровой код, соответствующий частоте колебаний арматуры, имеющей напряжение;
l - свободная длина арматуры между упорами формы или стенда (на чертеже не показаны);
k - количество периодов колебаний отсчитываемых счетчиком 5;
d - диаметр контролируемого арматурного элемента;
fг - частота генератора 6;
σпр - напряжение в арматуре, заданное проектом (рабочими чертежами на изделие).
Полученное после вычисления в АЛУ 16 значение поступает на вход 8 процессора 12, после чего процессор 12 запрашивает в ПЗУ 14 программ частотные диапазоны устройства и последовательно сравнивает границы этих диапазонов n
Выбранный таким образом диапазон, т.е. его границы, по команде с выхода 6 процессора 12 запоминаются ОЗУ 15.
Границы диапазонов устройства выбраны таким образом, чтобы верхняя граница n
После того, как вся необходимая информация с клавиатуры 13 введена в ОЗУ 15, осуществляют ударное либо щипковое возбуждение колебаний в контролируемом арматурном элементе. Затем к нему подносят датчик 1 и нажимают кнопку "Пуск".
При этом, сигналом с выходов 1 и 2 процессора 12 производится установка в исходное состояние соответственно счетчика 5 и реверсивного счетчика 8.
Датчик 1, воспринимая колебания арматурного элемента, формирует сигнал, который поступает на выпрямитель 2. На входы компаратора 4 поступают сигналы с выпрямителя 3 и усилителя 2. В момент совпадения амплитуды этих сигналов срабатывает компаратор 4, формируя сигнал, поступающий на счетчик 5, который производит два последовательных отсчета k периодов колебания арматуры.
После отсчета первых k периодов колебаний арматуры сигнал с выхода счетчика 5 через элемент "И" 7 поступает на реверсивный счетчик 6. Одновременно через элемент "И" 7 на реверсивный счетчик 8 поступают импульсы эталонной частоты fг с генератора 6. Сигнал с генератора 6 поступает также на вход 4 процессора 12, где формируется тактовая частота работы всего устройства.
Реверсивный счетчик 8 отсчитывает количество импульсов n1 эталонной частоты fг за первые k периодов колебания арматуры, затем с выхода 2 реверсивного счетчика 8 на вход 1 процессора 12 поступает сигнал об окончании счета. После чего с выхода 1 процессора 12 на счетчик 5 поступают сигнал, устанавливающий его в исходное состояние. Одновременно с выхода 6 процессора 12 в ОЗУ 15 поступает команда на запоминание цифрового кода n1, отсчитанного реверсивным счетчиком 8, а с выхода 3 процессора 12 на реверсивный счетчик 8 поступает команда на реверс счета.
Затем счетчик 5 отсчитывает последующие k периодов колебания арматуры. Сигнал с его выхода поступает через элемент "И" 7 на реверсивный счетчик 8, который вычитает из количества импульсов, отсчитанных за время прохождения первых k периодов колебания арматуры, импульсы эталонной частоты fг, прошедшие через элемент "И" 7 за последующие k периодов колебания арматуры. Таким образом определяется точность совпадения цифровых кодов первого ( n1 ) и последующего ( n2 ) измерений.
После отсчета счетчиком 5 последующих k периодов колебания арматуры, с его выхода 2 на вход 3 процессора 12 поступает сигнал об окончании счета. При этом сигналом с выхода 1 процессора 12 счетчик 5 устанавливается в исходное состояние и блокируется его работа.
Одновременно с выхода 2 реверсивного счетчика 8 на вход 1 процессора 12 поступает информация о точности совпадения цифровых кодов первого и последующего измерений (n1 и n2) после чего сигналом с выхода 2 процессора 12 реверсивный счетчик 8 устанавливается в исходное состояние. В случае не совпадения цифровых кодов n с заданной процессором 12 степенью точности, цикл измерения автоматически повторяется.
При соблюдении же этого требования с выхода 6 процессора 12 в ОЗУ 15 поступает команда на ввод в процессор 12 значения цифрового кода n, измеренного устройством. После этого процессор 12 производит сравнение этого цифрового кода n с граничными для выбранного диапазона цифровыми кодами nmin и nmax. Если измеренное значение цифрового кода n находится за пределами выбранного диапазона, т.е. n < n
Если в результате всех трех замеров измеренный устройством цифровой код n будет всякий раз находиться за пределами выбранного диапазона, то процессор 12 вновь выводит из ПЗУ 14 программ границы частотных диапазонов и, последовательно сравнивая их с измеренным значением n, выбирает соседний диапазон таким образом, чтобы было соблюдено условие n
Затем с выхода 6 процессора 12 в ОЗУ 15 поступает команда на сброс записанного значения n, после чего процессор 12 запускает в работу счетчики 5 и 8, и цикл измерения повторяется.
Если измеренное значение n находится в пределах выбранного ранее диапазона, т.е. то с выхода 4 процессора 12 в ПЗУ 14 программ поступает команда на ввод в АЛУ 16 формулы для расчета напряжений в арматуре, а в ОЗУ 15 с выхода 6 процессора 12 поступает команда на ввод в АЛУ 16 значений l, d и n, а в процессор 12 - значения класса арматуры.
Процессор 12 выбирает модуль упругости E по записанной в ПЗУ 14 программ таблице соответствия модуля упругости E классу арматуры и дает с выхода 4 команду на ввод его значения из ПЗУ 14 программ в АЛУ 16, после чего с выхода 5 процессора 12 в АЛУ 16 поступает команда на вычисление напряжения n
АЛУ 16 производит вычисление напряжения в арматуре по известной формуле:
σ
где:
fг, k, l, d - значения, приведенные в пояснении к формуле (1);
E - модуль упругости арматурной стали.
n - цифровой код, соответствующий частоте колебаний арматуры, имеющей напряжение .
Затем вычисленное значение напряжения σ в арматуре запоминается АЛУ 16 и через дешифратор 10 отображается на индикаторе 11.
Если же измеренное устройством напряжение σ в арматуре отличается от заданного проектом напряжения σ , то это означает, что требуется проведение операции по корректировке длины l контролируемого арматурного элемента, а следовательно, надо вычислить величину σпр , на которую необходимо удлинить или укоротить арматурный элемент для обеспечения проектных напряжений Δlк .
Для получения этой информации нажимают кнопку σпр (на чертеже не показана) клавиатуры 13. При этом с выхода 4 процессора 12 в ПЗУ 14 программ поступает команда на ввод в АЛУ 16 формулы для расчета Δlк , а с выхода 6 процессора 12 в ОЗУ 15 поступает команда на ввод в АЛУ 16 значений Δlк и l, а в процессор 12 - класса арматуры. После этого процессор 12 выбирает модуль E упругости по таблице соответствия модуля E упругости классу арматуры, записанной в ПЗУ 14 программ, и дает с выхода 4 команду на ввод из ПЗУ 14 программ в АЛУ 16 значения модуля E упругости. Затем с выхода 5 процессора 12 в АЛУ 16 поступает команда на вычисление величины коррекции σпр длины l арматурного элемента.
АЛУ 13 производит вычисление Δlк по известной формуле:
Δlк
где
- измеренное устройством напряжение в арматуре;
σ - величина, на которую необходимо удлинить либо укоротить арматурный элемент, т.е. откорректировать расстояние между временными анкерами (на чертеже не показаны) арматурного элемента для обеспечения Δlк ;
σпр , l, E - значения, приведенные в пояснении к формулам (1) и (2).
Затем вычисленное АЛУ 16 значение σпр через дешифратор 10 отображается на индикаторе 11. Цикл измерения заканчивается после получения оператором команды о необходимости приведения напряжения Δlк в арматурном элементе в соответствие с напряжением σ/ , заданным проектом, путем удлинения или укорочения длины арматурного элемента.
В режиме определения заданного удлинения арматурного элемента σпр устройство работает следующим образом (см. фиг. 3). С клавиатуры 13 в ОЗУ 15 осуществляется ввод значений Δl0 , класса арматуры. По окончании ввода с выхода 1 клавиатуры 13 на вход 5 процессора 12 поступает сигнал, после чего с выхода 4 процессора 12 в ПЗУ 14 программ поступает команда на ввод в АЛУ 16 формулы для расчета заданного удлинения σпр , а с выхода 6 процессора 12 в ОЗУ 15 поступает команда на ввод в АЛУ 16 значений l и Δl0 и на ввод в процессор 12 значений σпр , класса арматуры. Процессор 12 по таблицам соответствия, записанным в ПЗУ 14 программ, выбирает: модуль E упругости по таблице соответствия модуля E упругости классу арматуры, коэффициент k по таблице соответствия упругопластических свойств арматурной стали классу арматуры в зависимости от величины проектного напряжения σпр в арматуре, предельно допускаемое отклонение P величины предварительного напряжения арматуры σпр по таблице его соответствия длине l.
После проведения этих операций процессор 12 дает с выхода 4 команду на ввод из ПЗУ 14 программ в АЛУ 16 значений модуля E упругости, допускаемого отклонения P предварительного напряжения и коэффициента k, после чего с выхода 5 процессора 12 в АЛУ 16 поступает команда на вычисление заданного удлинения σ арматурного элемента. АЛУ 16 производит вычисление Δl0 по известной формуле:
Δl0
где
- заданное удлинение арматурного элемента;
k - коэффициент, учитывающий упругопластические свойства стали и определяемый в зависимости от класса арматуры и значения проектных напряжений Δl0 в арматуре;
P - предельно допускаемое отклонение величины предварительного напряжения σпр арматуры от проектного значения, определяется в зависимости от длины l;
l, σ , E - значения, приведенные в пояснении к формулам (1) и (2).
Затем вычисленное АЛУ 16 значение σпр через дешифратор 10 отображается на индикаторе 11.
Полученную информацию о том, на сколько нужно изменить длину испытуемого арматурного элемента для обеспечения проектной величины предварительного напряжения в нем, передают на соответствующий технологический участок для корректировки расстояния между временными анкерами данного арматурного элемента. Это позволяет провести указанную операцию оперативно, точно и с минимальными трудозатратами.
Таким образом, заявляемое устройство для измерения параметров предварительно напряженных арматурных элементов железобетонных конструкций, в сравнении с прототипом, обеспечивает повышение производительности контроля за счет расширения функциональных возможностей устройства.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЯ БЕТОНОВ | 2001 |
|
RU2212663C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРОЧНОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | 1999 |
|
RU2170920C2 |
МНОГОКАНАЛЬНЫЙ ПРИЕМОИНДИКАТОР СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМ | 2001 |
|
RU2205417C2 |
СИСТЕМА УПРАВЛЕНИЯ БОЛЬШЕГРУЗНЫМ КРАНОМ | 2001 |
|
RU2196102C1 |
УСТРОЙСТВО ДЛЯ УЛЬТРАЗВУКОВОГО ИССЛЕДОВАНИЯ ГОЛОВНОГО МОЗГА | 2000 |
|
RU2203622C2 |
ЭЛЕКТРОННЫЙ СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ | 2000 |
|
RU2167427C1 |
СПОСОБ ВЫЧИСЛЕНИЯ ЭКВИВАЛЕНТНОЙ НАРАБОТКИ ПЛАНЕРА САМОЛЕТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2097830C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ ТЕКУЧИХ СРЕД | 1999 |
|
RU2176394C2 |
МИКРОПРОЦЕССОРНОЕ УСТРОЙСТВО РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ | 2017 |
|
RU2645750C1 |
УСТРОЙСТВО ВВОДА ИНФОРМАЦИИ | 1996 |
|
RU2097825C1 |
Изобретение предназначено для контроля соответствия предварительного напряжения арматурных элементов проектным значениям, а также для измерения параметров длины арматурных элементов. Технический результат заключается в повышении производительности контроля за счет расширения функциональных возможностей устройства. Устройство для измерения параметров предварительно напряженных железобетонных конструкций содержит датчик 1 колебаний, усилитель 2, выпрямитель 3, компаратор 4, счетчик 5, генератор 6, элемент "И" 7, реверсивный счетчик 6, блок 9 управления и обработки данных, дешифратор 10 и индикатор 11. Блок 9 управления 4 обработки данных содержит процессор 12 с клавиатурой 13, постоянное запоминающее устройство 14 программ (ПЗУ программ), оперативное запоминающее устройство 15 (ОЗУ) и арифметическое логическое устройство 16 (АЛУ). Устройство работает по принципу счета импульсов стабильной частоты, заполняющих один или несколько периодов колебаний арматурного элемента. 3 ил.
Устройство для измерения параметров предварительно напряженных арматурных элементов железобетонных конструкций, содержащее датчик колебаний, подключенный к входу усилителя, выход которого соединен с входом выпрямителя и первым входом компаратора, второй вход которого соединен с выходом выпрямителя, а выход компаратора подключен к первому входу счетчика, а также дешифратор, индикатор и элемент И, подключенный к генератору, отличающееся тем, что оно снабжено реверсивным счетчиком и блоком управления и обработки данных, содержащим процессор, клавиатуру, постоянное запоминающее устройство (ПЗУ) программ, оперативное запоминающее устройство (ОЗУ) и арифметическое логическое устройство (АЛУ), причем первый выход счетчика подключен к второму входу элемента И, выход которого соединен с первым входом реверсивного счетчика, первый выход последнего соединен с первым входом ОЗУ, второй выход реверсивного счетчика подключен к первому входу процессора, второй, третий, четвертый и пятый входы которого соединены соответственно с кнопкой "Пуск", вторым выходом счетчика, генератором и первым выходом клавиатуры, шестой вход процессора подключен к выходу ПЗУ программ, седьмой к второму входу ОЗУ, восьмой к первому выходу АЛУ, первый и второй входы которого соединены соответственно с выходом ПЗУ программ и выходом ОЗУ, а второй выход АЛУ соединен с входом дешифратора, выход которого подключен к индикатору, при этом первый, второй, третий, четвертый, пятый и шестой выходы процессора подключены соответственно к второму входу счетчика, второму и третьему входам реверсивного счетчика, входу ПЗУ программ, третьему входу АЛУ, третьему входу ОЗУ, четвертый вход которого соединен с вторым выходом клавиатуры.
SU, авторское свидетельство, 1353878, кл | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Авторы
Даты
1998-01-27—Публикация
1996-10-08—Подача