СПОСОБ ВЫДЕЛЕНИЯ ИЗОТОПОВ ИЗ ПРОДУКТОВ ДЕЛЕНИЯ, ПОЛУЧАЕМЫХ В ЯДЕРНОМ РЕАКТОРЕ (ВАРИАНТЫ) Российский патент 1998 года по МПК G21G4/08 

Описание патента на изобретение RU2103756C1

Изобретение относится в целом к способам разделения изотопов в ядерных реакторах и, в частности к способу, применяемому для получения в реакторах медицинских изотопов.

Начиная с 1945 года ядерные реакторы применяются для получения медицинских изотопов с помощью различных технологий. В патенте США N 4487738 раскрыт способ получения изотопа меди для применения его в целях медицинской диагностики и экспериментирования. Изотоп меди получают путем расщепления протона в сочетании с последующим химическим разделением и очисткой.

В патенте США N 3914373 раскрыт способ разделения изотопов путем введения в контакт исходного раствора, содержащего изотопы, с простым циклическим полиэфиром. Данный способ применялся для проведения клинических, биологических и медицинских исследований.

В патенте США N 4158700 раскрыт способ получения радиоактивного изотопа технеция-99м с использованием раствора, содержащего изотопы молибдена-99 и технеция 99м, и хроматографической колонны, которую элюируют с помощью нейтральной растворительной системы, включающий органический растворитель для получения изотопа технеция-99м, в виде сухого остатка, состоящего из частиц.

В статье В. Л. Ченг и др., ("Исследование разделения изотопа молибдена-99 и возвращения урана в повторный цикл в кипящий реактор", Применение радиоактивных изотопов, т. 40, вып. 4, 1989 с. 315 - 324) раскрыт способ, включающий отделение изотопа молибдена-99 топливного раствора сульфата урана, сопровождающийся осаждением альфа-бензоим оксима и очисткой путем хелатирования ионнообменника, оксида алюминия и гидроксида фосфата кальция в качестве адсорбентов. Кроме того указанный способ включает извлечение продукции расщепления, Mo-99 из мишени урана-235, который был подвергнут облучению в потоке нейтронов, генерируемом ядерным реактором большой мощности. Поскольку данные ядерные реакторы помимо их применения для получения медицинских изотопов используются и для других целей, их мощность велика, обычно от 20000 до 200000 кВ. При получении медицинских изотопов происходит крайне неэффективный расход выходной мощности ядерного реактора.

Целью изобретения является создание ядерного реактора, который может применяться исключительно для получения медицинских изотопов с применением технологии простой и непосредственной обработки; кроме того изобретение позволяет получать медицинские изотопы при снижении на два порядка уровня радиоактивных потерь и теплопотерь за счет рассеяния на каждую единицу полученного изотопа.

Для реализации изобретения используют реакторы малой мощности, в которых продукты расщепления находятся в жидком или газообразном состоянии. Реактор может представлять собой водный гомогенный реактор, или кипящий реактор, или реактор с газовым охлаждением, в котором расщепляемое вещество включает U-235, Pu-239 или U-233.

В случае применения водяного гомогенного или кипящего реактора в реакторе содержится водный раствор солей урана, помещенный в отражательный контейнер. При использовании реактора с газовым охлаждением, расщепляемое вещество находится на очень тонкой фольге или проволочках, в результате чего все продукты расщепления высвобождаются и попадают в газовый поток. Замедляющее вещество вводится отдельно.

Извлечение целевых продуктов расщепления для получения медицинских изотопов, например, Mo-99 обеспечивается способом, включающем введение раствора, а в случае применения реактора с газовым охлаждением, потока газа в абсорбционные колонны с насадкой из оксида алюминия. После того как продукты расщепления прошли циркуляцию через колонны с насадкой из оксида алюминия, они затем подвергаются очистке с помощью органических химикатов, которые могут находится в виде водного раствора. После завершения очистки продукты расщепления подвергают дополнительной обработке посредством их циркуляции через ионнообменные колонны с целью получения медицинских изотопов, например, Mo-99, которые пристают к веществу колонны.

Второй вариант осуществления изобретения представляет собой способ, применяемый в реакторах с газовым охлаждением, в котором мельчайшие частицы расщепляемого вещества, представляющие собой уран или соединение урана, например, карбид урана или оксид урана, подвергают расщеплению в реакторе. Обычно уран представляет собой изотоп урана-235. Данные мелкие частицы расщепляемого вещества охлаждают потоком газа, например, смесью гелия и ксенона или другого инертного газа или двуокисью углерода. Полученные продукты расщепления при расщеплении урана в критическом реакторе захлестываются потоком газа и удаляются из реактора. Данный поток газа, содержащий продукты расщепления, подают через газоадсорбцирующий слой, например, активированного угля или углерода, с целью адсорбирования продуктов расщепления из потока газа. Газоадсорбирующий слой затем может быть удален, а адсорбированные продукты расщепления отделены от адсорбирующего слоя с помощью, например, нагревания, и в свою очередь, растворены в водном растворе путем, например, бартирования газа через раствор. Раствор, содержащий продукты расщепления, может быть затем обычными известными в технике способами, например не может быть пропущен через колонну из оксида алюминия с целью сбора медицинских изотопов, например, Mo-99.

Полученные продукты расщепления могут быть смешаны с углеродом или другими газоадсорбирующими веществами, причем при нагревании их продуктами расщепления элюируют в поток газа для их разделения, как указано выше.

Смешивание мелких частиц может быть проведено с замедляющим эффектом, например, мелкими частицами полиэтилена, выступающего в роли нейтрального замедлителя и улавливателя продуктов расщепления, которые, в свою очередь, попадают в поток газа и подвергаются разделению, как указано выше.

Соли урана могут быть поданы через стрежни из пористого полиэтилена таким образом, что соли урана прилипают к поверхности пористого полиэтилена. Данные стержни затем собирают в соответствии с конфигурацией реактора, которая может достигнуть критичности реактора. Уран расщепляется, а продукты расщепления затем захватываются потоком газа, охлаждающим реактор и удаляющим продукты расщепления для их разделения, как указано выше.

Хотя выше были рассмотрены и подробно описаны конкретные варианты осуществления изобретения, с целью проиллюстрировать применение принципов изобретения, очевидно, что изобретение может быть осуществлено и иными способами, не выходящими за пределы вышеуказанных принципов.

Похожие патенты RU2103756C1

название год авторы номер документа
ТРАНСПОРТИРОВОЧНЫЙ КОНТЕЙНЕР ДЛЯ ВЫСОКООБОГАЩЕННОГО УРАНА (ВАРИАНТЫ) 1994
  • Пол Чарльз Чилдресс[Us]
RU2111560C1
СИСТЕМА ПРОИЗВОДСТВА ЦЕЛЕВОГО ГАЗА, УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛА И УДАЛЕНИЯ КИСЛОГО ГАЗА НА ЕЕ ОСНОВЕ И СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЕВОГО ГАЗА 1995
  • Роберт А. Макилроу
  • Роберт А. Кюхнер
  • Джон И. Монасилли
  • Деннис В.Джонсон
RU2135273C1
СИСТЕМА И СПОСОБ КЛАССИФИКАЦИИ И ОХЛАЖДЕНИЯ МАТЕРИАЛА МАКРОЧАСТИЦ 1995
  • Давид Л.Крафт
  • Михаил Дж.Жмания
RU2143328C1
ПРЯМОТОЧНЫЙ ПАРОГЕНЕРАТОР (ВАРИАНТЫ) 1995
  • Мелвин Дж.Албрехт
RU2139472C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ЭКСТРАКЦИИ И ОБРАБОТКИ МОЛИБДЕНА-99 2011
  • Гленн Дэниэл Е.
  • Аасе Скотт Б
  • Стагг Вильям Р
RU2548033C2
РЕАКТОР ПСЕВДООЖИЖЕННОГО СЛОЯ С ВОЗВРАТОМ ЧАСТИЦ 1994
  • Александер Киплин К.
  • Белин Феликс
  • Джеймс Давид И.
  • Уолкер Давид Дж.
RU2126934C1
УСТРОЙСТВО И СПОСОБ ПРОВЕДЕНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ НА ОСНОВЕ ПСЕВДООЖИЖЕННОГО СЛОЯ С РЕЦИРКУЛЯЦИЕЙ ИЗМЕЛЬЧЕННЫХ ЧАСТИЦ ТВЕРДОЙ ФАЗЫ В ЭТОМ СЛОЕ 2000
  • Андерсон Гэри Л.
  • Мариамчик Михаил
  • Витцке Дональд Л.
RU2302289C2
СЕГМЕНТИРОВАННЫЙ УЗЕЛ ПИКИ 1999
  • Рейд Колин
  • Джедри Дана Л.
RU2232346C2
МИШЕНЬ ДЛЯ ПОЛУЧЕНИЯ ИЗОТОПОВ 2011
  • Риз Стивен Ричард
  • Палмер Тодд Стефен
  • Келлер Стефен Тодд
  • Манк Мэдикен
RU2568559C2
СПОСОБ ВЫДЕЛЕНИЯ МОЛИБДЕНА-99 ИЗ ТОПЛИВА РАСТВОРНОГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Бродская Валерия Алексеевна
  • Будников Дмитрий Владимирович
  • Воронцов Сергей Владимирович
  • Глухов Леонид Юрьевич
  • Грачев Дмитрий Валерьевич
  • Гречушкин Владимир Борисович
  • Девяткин Андрей Александрович
  • Деманов Вячеслав Алексеевич
  • Есьман Александра Александровна
  • Завьялов Николай Валентинович
  • Карпунин Станислав Михайлович
  • Корнеева Ольга Владимировна
  • Костюков Валентин Ефимович
  • Крыжановский Алексей Александрович
  • Кузнецов Денис Дмитриевич
  • Максимов Михаил Юрьевич
  • Михайлов Евгений Николаевич
  • Мусин Игорь Зейнурович
  • Пикулев Алексей Александрович
  • Сажнов Владимир Васильевич
  • Смердов Вячеслав Иванович
  • Тарасов Сергей Владимирович
  • Федоренков Семен Владимирович
  • Шаравин Владислав Александрович
  • Уроженко Василий Викторович
  • Ледовский Сергей Федорович
  • Орлов Игорь Владимирович
  • Давыденко Антон Евгеньевич
  • Полинко Константин Николаевич
RU2716828C1

Реферат патента 1998 года СПОСОБ ВЫДЕЛЕНИЯ ИЗОТОПОВ ИЗ ПРОДУКТОВ ДЕЛЕНИЯ, ПОЛУЧАЕМЫХ В ЯДЕРНОМ РЕАКТОРЕ (ВАРИАНТЫ)

Использование: в способах разделения изотопов, полученных в ядерном реакторе, а именно в способах получения медицинских изотопов в реакторах малой мощности. Сущность: способ заключается в том, что в ядерном реакторе мощностью 100 - 300 кВт облучают радиоактивный материал. Полученную смесь продуктов пропускают сначала через колонку с оксидом алюминия с последующей обработкой среды химическими реагентами, а затем целевой изотоп сорбируют на ионообменнике. Вариантом способа является подача радиоактивного материала в виде мелких частиц в реактор мощностью 100 - 300 кВт, удаление продуктов деления из реактора потоком газа и выделение из газового потока целевого изотопа. Для выделения изотопа поток газа пропускают через слой адсорбента, поглощающего газ, переводят адсорбированные продукты деления в водный раствор, пропускают водный раствор через колонку с оксидом алюминия, который затем обрабатывают химическими реагентами, а полученный раствор пропускают через ионообменник для выделения целевого изотопа. В качестве радиоактивного материала преимущественно используют уран-235 или уран-233, или плутоний-239, а в качестве целевого изотопа получают молибден-99. В качестве адсорбента преимущественно используют активированный уголь или углерод. Получаемый технический результат: использование реактора мощностью 100 - 300 кВт позволяет получать медицинские изотопы высокой чистоты, способ характеризуется простотой осуществления. 2 с. и 22 з.п. ф-лы.

Формула изобретения RU 2 103 756 C1

1. Способ выделения изотопов из продуктов деления, получаемых в ядерном реакторе, включающий облучение радиоактивного материала в реакторе с образованием продуктов деления, пропускание радиоактивного материала с продуктами деления через ионообменник и колонку с оксидами алюминия с последующей десорбцией продуктов деления с сорбента, отличающийся тем, что радиоактивный материал пропускают первоначально через колонку с оксидом алюминия с последующей обработкой среды химическими реагентами, с последующей сорбцией изотопа на ионообменнике, а облучение проводят в реакторе мощностью 100 300 кВт. 2. Способ по п.1, отличающийся тем, что химические реагенты представляют собой органические вещества. 3. Способ по п.1, отличающийся тем, что химические реагенты представляют собой неорганические вещества. 4. Способ по п.1, отличающийся тем, что в качестве радиоактивного материала использован уран-235. 5. Способ по п.1, отличающийся тем, что в качестве радиоактивного материала использован плутоний-239. 6. Способ по п.1, отличающийся тем, что в качестве радиоактивного материала использован уран-233. 7. Способ по п.1, отличающийся тем, что полученный изотоп представляет собой молибден-99. 8. Способ выделения изотопов из продуктов деления, получаемых в ядерном реакторе, включающий облучение радиоактивного материала, содержащего не менее одного изотопа урана, в ядерном реакторе, пропускание радиоактивного материала с продуктами деления через ионообменник и колонку с оксидом алюминия с последующей десорбцией изотопа с сорбента, отличающийся тем, что радиоактивный материал подают в реактор мощностью 100 300 кВт в виде мелких частиц, продукты деления удаляют из реактора потоком газа, причем поток газа с продуктами деления пропускают через слой адсорбента, поглощающего газ, переводят выделенные на слое адсорбента продукты деления в водный раствор, который пропускают через колонку с оксидом алюминия, обрабатывают материал химическими реагентами и выделяют изотоп путем пропускания раствора через ионообменник. 9. Способ по п.8, отличающийся тем, что в качестве химических реагентов использованы органические вещества. 10. Способ по п.8, отличающийся тем, что в качестве химических реагентов используют неорганические вещества. 11. Способ по п.8, отличающийся тем, что в качестве изотопа урана используют уран-235. 12. Способ по п.8, отличающийся тем, что продукты деления дополнительно охлаждают инертным газом. 13. Способ по п.12, отличающийся тем, что для удаления продуктов деления используют инертный газ. 14. Способ по п.13, отличающийся тем, что в качестве инертного газа используют смесь гелия и ксенона. 15. Способ по п.8, отличающийся тем, что для удаления продуктов деления используют диоксид углерода. 16. Способ по п.8, отличающийся тем, что в качестве адсорбента используют активированный уголь. 17. Способ по п.8, отличающийся тем, что продукт деления удаляют нагреванием из слоя адсорбента. 18. Способ по п.8, отличающийся тем, что продукт деления растворяют в водном растворе путем барботирования газа через раствор. 19. Способ по п.8, отличающийся тем, что в результате облучения получают молибден-99. 20. Способ по п.8, отличающийся тем, что перед облучением частицы радиоактивного материала смешивают с адсорбентом. 21. Способ по п.20, отличающийся тем, что в качестве адсорбента используют углерод. 22. Способ по п.8, отличающийся тем, что перед облучением частицы радиоактивного материала смешивают с замедляющим веществом, действующим в качестве замедлителя нейтронов. 23. Способ по п.22, отличающийся тем, что в качестве замедляющего вещества используют полиэтилен. 24. Способ по п.8, отличающийся тем, что радиоактивный материал в виде раствора соли урана пропускают через пористые стержни из полиэтилена, причем стержни с адсорбированной солью урана размещают по конфигурации реактора.

Документы, цитированные в отчете о поиске Патент 1998 года RU2103756C1

US, патент, 4158700, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Cheng W.L
et al
Appl
Radiat
Isot., 1989, v.40, N 40, p.315 - 324.

RU 2 103 756 C1

Авторы

Рассел М.Болл[Us]

Даты

1998-01-27Публикация

1993-12-07Подача