СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ Российский патент 1998 года по МПК E21B43/28 

Описание патента на изобретение RU2105876C1

Предлагаемое изобретение относится к области геотехнологии и может быть использовано при подземном выщелачивании металлов из руд.

Известен способ подземного выщелачивания металлов [1] включающий вскрытия рудной залежи скважинами, подачу в них технологических растворов, выщелачивающих металлы из руд, откачку технологических продуктивных растворов.

Недостатком данного способа являются высокие экологические издержки вследствие засорения недр технологическими растворами, содержащими токсичные активные агенты (цианиды, кислоты, щелочи и др.).

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ [2] включающий оконтуривание рудной залежи скважинами, размещение в них электродов и подачу на них постоянного или переменного электрического тока.

Недостатком данного способа является высокий расход электроэнергии на выщелачивание металлов.

Цель предлагаемого изобретения заключается в повышении эффективности процесса подземного выщелачивания металлов за счет снижения расхода электроэнергии путем оптимального выбора направления движения электронов и ионов.

Поставленная цель достигается тем, что при осуществлении предложенного способа, включающего бурение скважин, их обсадку, оборудование оголовками, размещение в них электродов, подачу технической воды и электроэнергии, электроды вокруг рудной залежи размещают наиболее рационально по отношению к силовым линиям электрического тока.

При этом необходимо учитывать широко известный в геологии и геохимии, но до сих пор не нашедший применения в технике и технологии, факт влияния на удельное сопротивление руд развития в них микрослоистости (см. книгу Пархоменко Э. И. Электрические свойства горных пород. М. Наука, 1965, с. 164). В этом случае сопротивление выщелачиваемой горной массы будет зависеть от того, по какому направлению возбуждается электрический ток. Ясно, что сопротивление по направлению слоистости минералов будет значительно меньшим, чем поперек них. Об отношении этих параметров в реальных условиях можно судить по данным для рудной массы (цинковая обманка галенит): удельное сопротивление ρ поперек слоистости будет 3,6•104, а вдоль слоистости 0,1 Ом. В результате того или иного выбора движения растворов и электрического тока в значительной мере зависят потери электроэнергии, а следовательно и эффективность процесса выщелачивания в целом.

На чертеже представлен вариант схемы подземного выщелачивания металлов, где цифрами обозначены: 1 рудная залежь, 2 слоистость минералов, 3, 4 - скважины с электродами; стрелками показано направление миграции растворов (вод) и электрического тока.

Способ осуществляется следующим образом.

Первоначально рудную залежь 1 вскрывают скважинами 3 и 4. Скважины обсаждают (на чертеже не показано) полиэтиленовыми трубами, затем в них размещают электроды (на чертеже не показано). Если рудная залежь не обводнена, то в скважину 3 подают воды, в некоторых случаях, для интенсификации процесса выщелачивания металлов, технологические растворы, содержащие активные агенты. Затем на электроды подают постоянный или переменный ток. Причем электроды (а соответственно и сами скважины) размещают так, чтобы направление миграции технологических растворов и электрического тока совпадало между собой и с направлением слоистости минералов, а не было поперек слоистости. В этом случае потери электроэнергии будут минимальными при максимальном извлечении металла из руд в растворы.

В результате будет происходить выщелачивание металлов из руд и миграция металлоносных растворов к откачной скважине 4, через которую их извлекают на дневную поверхность и направляют далее, например, на гидрометаллургический завод. В случае, если руды залежи 2 являются малопроницаемыми для растворов, то их предварительно взрыхляют, например, взрывами, не нарушая основную ориентацию слоистости минералов. Далее технология остается прежней.

Примером конкретного выполнения предложенного способа служит подземное выщелачивание цинка из руд.

Первоначально вскрывают рудную залежь 1 скважинами 3 и 4, с внутренним диаметром 155 мм. Скважины обсаждают полиэтиленовыми трубами, оборудуют фильтрами КДФ-120-08 и оголовками, снабжают электродами (на чертеже не показано). Бурение скважины осуществляют установкой БУ-20-2VIII. Затрубное пространство скважины заполняется гидроизоляционным материалом. Электроды (и скважины) размещают в соответствии с направлением слоистости минералов так, чтобы миграция растворов от закачной 3 к откачной 4 скважине и электрического тока совпадали с основным направлением слоистости минералов.

При подаче в скважину 3 технических вод (если залежь 1 не обводнена) или растворов щелочей (при интенсификации процесса выщелачивания) на электроды подают электрический ток с параметрами: V 4-6 B, плотность тока Jа=0,5-5 А/дм-2, создавая между электродами (и соответственно скважинами 3 и 4) разность напряжений. В результате будет обеспечено электровыщелачивание цинка из руд, его миграция в составе цинксодержащих вод к скважине 4 и извлечение через нее на поверхность. А так как при таком варианте выщелачивания сопротивление горной массы на 4 порядка ниже ее сопротивления поперек слоистости, то и потери электроэнергии будут в 4 раза ниже.

Положительный эффект предложенного технического решения заключается в повышении эффективности процесса подземного выщелачивания металлов за счет снижения расхода электроэнергии путем оптимального выбора направления движения электронов и ионов.

Предложенное изобретение может быть использовано при подземном выщелачивании металлов.

Применение изобретения позволит расширить область геотехнологии за счет ведения процесса электровыщелачивания металлов в подземных условиях.

Похожие патенты RU2105876C1

название год авторы номер документа
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ 1995
  • Воробьев А.Е.
  • Забельский В.К.
  • Сазонов А.Г.
  • Татарко Н.И.
  • Чекушина Т.В.
RU2092687C1
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ЭЛЕКТРИЧЕСКИМ ТОКОМ 1995
  • Воробьев А.Е.
  • Бубнов В.К.
  • Голик В.И.
  • Алборов И.Д.
  • Лобанов Д.П.
  • Чекушина Т.В.
  • Васильцов Г.Н.
RU2091572C1
СПОСОБ ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ПЕРЕМЕННЫМ ЭЛЕКТРИЧЕСКИМ ТОКОМ 1995
  • Чантурия В.А.
  • Воробьев А.Е.
  • Чекушина Т.В.
  • Бубнов В.К.
RU2105877C1
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ЭЛЕКТРИЧЕСКИМ ТОКОМ 1996
  • Чантурия В.А.
  • Воробьев А.Е.
  • Чекушина Т.В.
RU2110682C1
СПОСОБ СКВАЖИННОГО ВЫЩЕЛАЧИВАНИЯ ВЫСОКОГЛИНИСТЫХ РУД 1995
  • Воробьев А.Е.
  • Ануфриев А.А.
  • Чекушина Т.В.
  • Бубнов В.К.
RU2092688C1
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ РУД ЦВЕТНЫХ МЕТАЛЛОВ 2005
  • Орлов Станислав Львович
  • Басков Дмитрий Борисович
RU2293844C2
СПОСОБ ПОДГОТОВКИ РУДНЫХ ТЕЛ НА МЕСТЕ ЗАЛЕГАНИЯ К ВЫЩЕЛАЧИВАНИЮ ПОЛЕЗНЫХ КОМПОНЕНТОВ 2006
  • Рыльникова Марина Владимировна
  • Радченко Дмитрий Николаевич
  • Абдрахманов Ильяс Ахметович
  • Илимбетов Азамат Фаттахович
  • Сараскин Александр Викторович
RU2327864C1
СПОСОБ СОЗДАНИЯ ТЕХНОГЕННЫХ МЕСТОРОЖДЕНИЙ 1993
  • Трубецкой Климент Николаевич
  • Воробьев Александр Егорович
  • Чекушина Татьяна Владимировна
  • Бубнов Василий Карпович
RU2065051C1
СПОСОБ ПОДГОТОВКИ РУДНЫХ ТЕЛ НА МЕСТЕ ЗАЛЕГАНИЯ К ВЫЩЕЛАЧИВАНИЮ ПОЛЕЗНЫХ КОМПОНЕНТОВ 2012
  • Рыльникова Марина Владимировна
  • Мусин Вячеслав Халикович
  • Старостин Евгений Петрович
  • Радченко Дмитрий Николаевич
  • Абдрахманов Ильяс Ахметович
RU2495238C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ВЫЩЕЛАЧИВАНИЯ РУД 1994
  • Воробьев А.Е.
  • Бубнов В.К.
  • Чекушина Т.В.
  • Хадонов З.М.
  • Голик В.И.
  • Пагиев К.Х.
  • Алборов И.Д.
  • Чекушин А.В.
RU2108453C1

Реферат патента 1998 года СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ

Изобретение относится к области геотехнологии и может быть использовано при подземном выщелачивании металлов из руд. Способ выщелачивания металлов включает вскрытие рудной залежи скважинами, размещение в них обсадных колонн, фильтров, оголовков и электродов, подачу технологических растворов и электроэнергии, отличается тем, что выщелачивание металлов ведут при совпадении направления миграции растворов и электрического тока с направлением слоистости выщелачиваемых минералов. 1 ил.

Формула изобретения RU 2 105 876 C1

Способ подземного выщелачивания металлов, включающий вскрытие рудной залежи скважинами, размещение в них обсадных колонн, фильтров, оголовков и электродов, подачу технологических растворов и электроэнергии, отличающийся тем, что выщелачивание металлов из руд ведут при совпадении направления миграции растворов и электрического тока с направлением слоистости выщелачиваемых минералов.

Документы, цитированные в отчете о поиске Патент 1998 года RU2105876C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аренс В.Э
Скважинная добыча полезных ископаемых
М.Недра, 1986, с
Деревянная повозка с кузовом, устанавливаемым на упругих дрожинах 1920
  • Ливчак Н.И.
SU248A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Мосинец В.Н
и др
Строительство и эксплуатация редников и поздемного выщелачивания, М, Недра, 1987, с
Способ изготовления замочных ключей с отверстием для замочного шпенька из одной болванки с помощью штамповки и протяжки 1922
  • Личадеев Н.Н.
SU221A1

RU 2 105 876 C1

Авторы

Трубецкой К.Н.

Воробьев А.Е.

Бубнов В.К.

Даты

1998-02-27Публикация

1995-04-03Подача