Изобретение используется для преобразования кинетической энергии скоростного напора ветра, действующего на привязной летающий аппарат (ПЛА), в механическую работу, с передачей на землю механической мощности с целью исключения капитальных затрат на сооружение устойчивой к ветровым нагрузкам высокой башни, фундамента, улучшения показателей окупаемости установки.
В первую половину поворота кривошипа (дуга c-d-a, фиг. 4) вокруг своей оси, за счет сил инерции, при укороченном размере уздечки ПЛА lузд1 (фиг. 4), с меньшим углом атаки (фиг. 4) набегания потока ветра на ПЛА, что соответствует режиму подготовки (парения), действующая сила лобового сопротивления создает тяговое усилие в леерах (тросах) 1 и 2 (фиг. 1 и 2). Это усилие уравновешивается силой реакции на шатунном пальце кривошипа (точка "П", фиг. 4). В результате совершаемого вращательного движения кривошипа 3 (фиг. 2 и 4) ПЛА перемещается леерами навстречу потока ветра W (фиг. 4) до завершения этой половины поворота оборота кривошипа, при этом кулачковый механизм, организованный кулачковой парой 4 и 5 (фиг. 2 и 3) (профилированный кулачок которой установлен на валу кривошипа), в конце завершения этой половины оборота (дуга c-d-a, фиг. 4) воздействует через ведомый кулачок 5 (фиг. 2) на меньшее плечо рейтерного рычага 20 (фиг. 2 и 3), что вызывает через трос 16 (фиг. 2) угловое перемещение качалки 15 (фиг. 2) с установленным на ней катком 8 (фиг. 2) управляющим размером уздечки ПЛА, вследствие чего ПЛА переводится в режим с большей длиной уздечки lузд2 (фиг. 4), что соответствует режиму рабочего хода по дуге a-b-c (фиг. 4), а тяговые усилия лееров 1 и 2 (фиг. 1 и 2), приложенные к шатунному пальцу кривошипа (точка "П", фиг. 4), на радиусе установки шатунного пальца создают крутящий момент на валу кривошипа (ось вала O-O, фиг. 2 и 3) большего значения, чем в первой половине оборота вала кривошипа. При дальнейшем повороте вала, в конце второй половины оборота кривошипа кулачковый механизм вновь через рейтерную рычажную систему перемещает каток 8 (фиг. 2), управляющий длиной уздечки, в противоположное положение восстанавливает исходную длину уздечки lузд1 (фиг. 1 и 4). Совокупность и последовательность действий используемых средств за один полный оборот кривошипа создают отличающиеся по величине крутящие моменты, разница которых составляет полезную работу (мощность) на валу кривошипа (ось вала O-O, фиг. 2 и 3).
Описание устройства ветроустановки по п. 1 для задания разницы длины уздечки ПЛА в режиме парения и режиме рабочего хода с целью регулирования мощности.
Переключение ПЛА с режима I на режим II (фиг. 1) задается положением профилированного кулачка 4 (фиг. 2), профиль которого соответствует этим режимам. Опора ведомого кулачка 5 (фиг. 2 и 3), выполненная заодно с плунжером насоса 22 (фиг. 3) в зависимости от угла поворота ведущего, совершает линейное возвратно-поступательное движение вдоль оси плунжера насоса 22 (фиг. 3) и приводит через рычажно-тросовую систему 16, 15, 2 (фиг. 2), 20 (фиг. 3) к изменению размера уздечки Уз 1 на размер Уз 2 (фиг. 1), что и определяет воздействующую силу ветра на ПЛА за счет аэродинамического сопротивления ПЛА и, следовательно, мощность ветроустановки. Линейное положение опоры рейтерного рычага 9 (фиг. 2 и 3) по длине червячного вала привода 11 (фиг. 2; 3) задает отношение плеч рейтерного рычага B1:B2 (фиг. 2) и задает разницу углов атаки ПЛА α2-α1 для отличающихся крутящих моментов на валу кривошипа на режимах I и II. Разница этих моментов формирует на текущих оборотах вала кривошипа выходную мощность ветроустановки. Изменение соотношения плеч B1:B2 в зависимости от скорости потока ветра W (фиг. 1) приводит к изменению выходной мощности установки.
Описание устройства ветроустановки по п. 1 для задания внешней длины леера уздечки с целью компенсации вытяжки лееров в процессе работы ветроустановки.
Леера (тросы) 1 и 2 (фиг. 1 и 2) в процессе эксплуатации, из-за разных уровней тяговых усилий, вытягиваются от размера начальных длин неодинаково и, как следствие, меняется разница длин уздечки Уз2 - Уз1 (фиг. 1) в рабочем режиме II и режиме парения I.
Устройство позволяет изменять начальную внешнюю длину леера уздечки 2 (фиг. 1 и 2) от катка 7 (фиг. 2) до противоположного узла заделки леера уздечки на ПЛА за счет сокращения (увеличения) межцентрового расстояния между катком 7 (фиг. 2) оттяжки уздечки и профильным кулачком 6. Опора катка оттяжки 7 шарнирно соединена с торцом червячного вала 10 механизма оттяжки, при поворотах червячного вала 10 по часовой стрелке (или против) изменяется межцентровое расстояние катков 7 и 6, чем и достигается изменение заданной внешней длины леера уздечки.
Подтверждение возможности осуществления изобретения.
В предлагаемом изобретении применены известные технические средства, позволяющие организовать последовательность действий над материальным объектом в необходимом объеме для объекта изобретения.
На фиг. 1 изображена кинематическая схема ПЛА; на фиг. 2 - то же, наземная часть установки; на фиг. 3 - то же, общий вид; на фиг. 4 - пояснение принципа действия установки.
Источники информации.
1. Машиностроение. Энциклопедический справочник. Том 2. М.: 1948 г. Механизмы с высшими парами, с. 21; 32 - 40; Кинематическая схема механизма, с. 5.
2. Шефтер Я.Н. Изобретателю о ветродвигателях и ветроустановках. - М.: Сельхозгиз, 1957, с. 98.
3. Авторское свидетельство СССР N 853148, кл. F 03 D 5/06.
название | год | авторы | номер документа |
---|---|---|---|
ВЕТРОГЕНЕРАТОР | 2011 |
|
RU2471086C2 |
СПОСОБ ИЗМЕРЕНИЯ УГЛА ЗАКРУТКИ ВАЛА, ЗАКРУЧЕННОГО ДЕЙСТВИЕМ КРУТЯЩЕГО МОМЕНТА С ИСПОЛЬЗОВАНИЕМ ШКАЛЫ НОНИУСА ПРИ НЕПРЕРЫВНО ВРАЩАЮЩЕМСЯ ВАЛЕ | 1992 |
|
RU2107271C1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ТЕЧЕНИЯ ВОЗДУШНЫХ ИЛИ ВОДНЫХ ПОТОКОВ И ЭНЕРГОУСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2492356C1 |
ВЕТРОДВИГАТЕЛЬ | 2003 |
|
RU2285148C2 |
СПОСОБ ПРЕОБРАЗОВАНИЯ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ВЕТРА | 2008 |
|
RU2379545C1 |
ЦИЛИНДРИЧЕСКАЯ ВЕТРОТУРБИНА | 2014 |
|
RU2563558C2 |
СПОСОБЫ ВЗЛЕТА И ПОСАДКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И ВЗЛЕТНО-ПОСАДОЧНАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТИХ СПОСОБОВ | 2010 |
|
RU2466913C2 |
КРЫЛЬЧАТО-ПАРУСНАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2011 |
|
RU2463473C1 |
ШАГАЮЩИЙ АППАРАТ НА ОСНОВЕ ПРЕОБРАЗОВАНИЯ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ В ЭНЕРГИЮ ДВИЖЕНИЯ | 2022 |
|
RU2800033C1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ВЕТРА НА ЛЕТАЮЩЕЙ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКЕ | 2018 |
|
RU2697075C1 |
Использование: в ветроэнергетике. Сущность изобретения: способ преобразования кинетической энергии скоростного напора ветра, действующего на привязной летающий аппарат, который совершает возвратно-поступательное движение в вертикальной плоскости на леерах уздечки, присоединенных к шатунному кольцу кривошипа. Ветроустановка содержит привязной летающий аппарат, рейтерную опору 9, червячный вал 10, рейтерный рычаг 20, кривошип 3. 2 з.п. ф-лы, 4 ил.
Устройство для использования энергиипОРыВОВ BETPA | 1979 |
|
SU853148A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Авторы
Даты
1998-04-27—Публикация
1992-03-16—Подача