Изобретение относится к продувке газами жидкостных аппаратов при осуществлении различных химико-технологических процессов в нефтяной, нефтехимической, нефтеперерабатывающей промышленности.
Известен способ продувки газа в жидкостных аппаратах через перфорированный распределитель, при этом эффективность продувки (использования газа) повышается с уменьшением размеров пузырьков газа и увеличением их числа, которые обуславливаются скоростью истечения газа, диаметром отверстий и вязкостью жидкости.
Наиболее близким техническим решением к предполагаемому изобретению является способ продувки жидкости струями газа, вводимых в аппарат со скоростью 20-60 м/с, при этом в конце газовой струи образуется куполообразная каверна, распадающаяся в дальнейшем на мелкие пузырьки, которые так называемый "пузырьковый шлейф".
Недостаток - если вязкость обрабатываемой жидкости более 0,02 Па•с (как, например, у битума), то при струйной продувке образуется небольшое количество крупных пузырей. Поэтому струйная продувка вязких жидкостей (например, битума) возможна лишь в тех случаях, когда можно осуществлять достаточную турбулентность жидкой фазы.
Задача изобретения - повышение качества продувки газа через обрабатываемую жидкость путем увеличения степени дисперсности его пузырьков.
Поставленная задача достигается тем, что осуществляют предварительное контактирование струи газа с потоком кативирующей жидкости, образующейся в сопловом насадке с последующим ударным встречным взаимодействием таких струй, при этом, в случае необходимости, в исходный поток воздуха дополнительно подают воду.
На чертеже показана схема, поясняющая предлагаемый способ. Обрабатываемая жидкость поступает в патрубок коаксиально соплового насадка со скоростью 2-3 м/с. В зоне коаксиального сопла скорость потока возрастает до 15-25 м/с, а давление падает. Жидкость под воздействием пониженного давления воспринимает расширяющие усилия и в момент равенства этого давления и давления насыщенных паров вскипает, образуя каверну с микропузырьками по всему сечению соплового насадка. При схлоповании микропузырьков образуются кумулятивные микроструи, которые оказывают перемешивающее воздействие на смеси жидкости и газа.
Через сопло насадка 1 в область каверны 2 подается воздух со скоростью 30-60 м/с. Под воздействием кумулятивных струй, скорость которых достигает порядка 10 м/с, и местных давлений в пределах 104 МПа, происходит микрокинетическое перемешивание фаз с образованием мелкодисперсных включений и наиболее активное протекание реакции. Сила давления кумулятивных струй, количество пузырьков газа в жидкости и капель жидкости в газе, а значит и качество смешения, зависит от температуры и вязкости жидкой фазы. Смесь газа и капель жидкости в объеме каверны имеет собственную частоту и амплитуду колебаний, которые зависят от температуры и давления в потоке.
Вода, подаваемая через сопло насадка 3, также попадает в область каверны, где в результате смешения воды с нагретой жидкостью возможно возникновение парового схлопывания (взрыва), который приводит к тому, что значительная часть высвобождающейся энергии реализуется в виде ударной волны.
Образовавшийся поток газожидкостной смеси вначале ведет себя как свободная затопленная струя, вытекающая в неограниченное пространство, и имеет традиционный для этой ситуации характерный профиль скоростей. Затем, как показали результаты исследований, наличия с расстояния примерно в два калибра от границы встречных потоков, расположенных на одной оси, профиль струи деформируется: появляется провал аксиальных скоростей по оси потока, увеличивающийся по мере приближения к границе соударений струй, а вектор скорости начинает поворачиваться в направлении, перпендикулярном оси струй. В зоне соударений струй возникает колебательное движение дисперсных фаз из одной струи в другую. После слияния встречных струй поток перестраивается, появляется четко выраженный максимум скоростей в плоскости симметрии. После того как весь газ струи переходит в пузырьковое состояние, т.е. в жидкости и группы пузырьков начинают двигать так называемым "пузырьковым шлейфом", эжектируя окружающую жидкость, обеспечивая достаточно большую поверхность обменных реакций.
Экономичность применения предлагаемого способа продувки воздуха показана в сравнении: обычный реактор и реактор со струйной подачей воздуха. (см. таблицу).
Использование изобретения в реакторе окисления битума позволяет уменьшить габариты реактора и величину подачи продувочного воздуха за счет увеличения полноты использования содержания в нем кислорода, избежать коксования реактора, сократить время продувки, повысить пропускную способность реактора.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРАВЛЕНИЯ РЕАКТОРОМ ДЛЯ ПОЛУЧЕНИЯ БИТУМА | 1995 |
|
RU2105035C1 |
КАВИТАЦИОННЫЙ РЕАКТОР ОКИСЛЕНИЯ БИТУМА | 1984 |
|
SU1249746A1 |
Установка для окисления нефтепродуктов | 1991 |
|
SU1792342A3 |
КАВИТАЦИОННЫЙ РЕАКТОР | 1987 |
|
SU1534815A1 |
СПОСОБ ГИДРОДИНАМИЧЕСКОЙ АКТИВАЦИИ МАТЕРИАЛОВ | 2013 |
|
RU2535682C1 |
КАВИТАЦИОННЫЙ РЕАКТОР | 1989 |
|
SU1672653A1 |
АЭРАТОР | 2000 |
|
RU2194024C2 |
УСТАНОВКА ДЛЯ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 2005 |
|
RU2304561C2 |
Способ получения тонкодисперсных смесей | 1982 |
|
SU1066630A1 |
Способ управления реактором для получения битума | 1983 |
|
SU1143762A1 |
Использование: изобретение может быть использовано при различных химико-технологических процессах. Сущность изобретения: осуществляют предварительное контактирование струи газа с потоком кавитирующей жидкости, образующейся в сопловом насадке с последующим ударным встречным взаимодействием таких струй, при этом, в случае необходимости, в исходный поток воздуха дополнительно подают воду. 1 ил.
Способ продувки газа через обрабатываемую жидкость, заключающийся в продувке жидкости струями газа, отличающийся тем, что осуществляют предварительное контактирование струи газа с потоком кавитирующей жидкости, образующейся в сопловом насадке, с последующим ударным встречным взаимодействием таких струй, при этом, в случае необходимости, в исходный поток воздуха дополнительно подают воду.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Грудников И.Б | |||
Производство нефтяных битумов | |||
- М.: Химия, 1983 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Проблемы турбулентных течений | |||
Под ред.В.В.Струминского | |||
- М.: Наука, 1987. |
Авторы
Даты
1998-05-20—Публикация
1995-09-27—Подача