Изобретение относится к области смесительной техники и может быть использовано для очистки загрязненных стоков, получения газожидкостных смесей в различных областях техники, в частности при производстве битумов.
Наиболее близким к предложенному является эжекторный аэратор, содержащий насос, выход которого подключен к выходному патрубку, выполненному с наружной конической осевой насадкой, образующей с выходным патрубком первый воздухозаборный патрубок (см. патент РФ 2142433 С1, кл. C 02 F 3/22, опубл. 10.19.99).
Недостатком данного устройства является недостаточная эффективность смешения (в первую очередь из-за того, что в жидкость попадают крупные пузырьки воздуха размером около 1-2 мм), а также невозможность регулировать расход воздуха в широких пределах, что обусловлено как подачей воздуха в патрубок, так и струйным способом подачи водовоздушной смеси в жидкую среду.
Таким образом, техническим результатом, ожидаемым от использования изобретения, является повышение эффективности смешения газа с жидкостью, возможность регулировать содержание газа в смеси в широких пределах.
Указанный результат достигается тем, что в аэраторе, содержащим насос, выход которого подключен к выходному патрубку, выполненному с осевой насадкой и первым воздухозаборным патрубком, выходной патрубок выполнен со вторым воздухозаборным патрубком, причем осевая насадка размещена в выходном патрубке между первым и вторым воздухозаборными патрубками.
При этом осевая насадка может быть выполнена кавитирующей и/или турбулизирующей, а выходной патрубок - в виде проточной камеры с конфузором и диффузором.
Рекомендуется также проточную камеру выполнить с люком для смены осевой насадки, в крышке которого размещен второй воздухозаборный патрубок.
Кроме того, первый воздухозаборный патрубок может быть выполнен нагнетающим.
Целесообразно также первый и второй воздухозаборные патрубки выполнить с элементами регулировки расхода.
И, наконец, аэратор может быть снабжен выходным коллектором, соединенным с выходом выходного патрубка.
На фиг. 1 показана блок-схема устройства, поясняющая одно из возможных применений предлагаемою аэратора, на фиг.2 - разрез аэратора.
Устройство, изображенное на фиг.1, содержит емкость 1 с жидкостью, первый входной (нагнетающий) воздухозаборный патрубок 2, выходной патрубок 3, насос 4. Патрубок 3 может быть подключен к коллектору 5, размещенному в емкости (колонне) 1. Коллектор может быть выполнен с выходными отверстиями или соплами. Второй входной воздухозаборный патрубок 6 и патрубок 2 снабжены элементами 7, 8 регулировки расхода соответственно. Осевая насадка 9 размещена в полости патрубка 3 между патрубками 2 и 6 по ходу движения среды в патрубке 3. Патрубок 2 может подключаться к источнику сжатого воздуха 10.
Насадка 9 может быть выполнена в виде кавитирующей насадки 11, турбулизирующей насадки 12 или их комбинаций (фиг.2).
Патрубок 3 (фиг.2) может крепиться на фланцах 13 и быть выполнен в виде конфузора 14, диффузора 15 и проточной камеры 16. Сменные насадки 11,12 устанавливаются на шпильке 17. Насадка 9 может выполняться в виде нескольких последовательно размещенных по оси камеры 16 конусов или усеченных конусов в виде одной или нескольких последовательных крыльчаток, в виде комбинации крыльчаток (являющихся турбулизирующими элементами) и конусов (являющихся кавитирующими элементами). Размещение кавитирующей насадки 9 между патрубками 2 и 6 означает, что патрубок 2 размещен до зоны низкого давления 18 и/или зоны кавитации 19, а патрубок 6 расположен вблизи зоны 18 или непосредственно в ней. Для смены насадок 11,12 служит отверстие 20 люка, закрытое герметичной крышкой 21.
Устройство работает следующим образом.
С нижней части колонны 1 подлежащая аэрированию жидкость, например замазученная вода или гудрон, попадает на всас насоса 4, откуда подается на вход патрубка 3 (конфузора 14). На вход патрубка 3 через патрубки 2 и/или 6 подается газ (воздух). В месте расположения насадки 9 (11 и/или 12) жидкость, смешанная с воздухом, поступающим в патрубок 3, ускоряется, давление насыщенных паров падает и жидкость вскипает, а после прохождения насадки 9 при повышении давления происходит схлопывание микропузырьков в зоне кавитации 19. Перед зоной 19 размещена зона пониженного давления 18, в которой и располагают патрубок 2. Схлопывание микропузырьков сопровождается выделением кинетической энергии микроструй, гомогенизарующих поток и дробящих включения, в том числе и пузырьки воздуха, т.е. процесс парогазовой кавитации.
В результате образуется жидкостно-воздушная, например гудронно-воздушная (или водовоздушная), пульпа и процесс аэрации в камере 16 интенсифицируется в силу большою массопереноса в процессе газовой кавитации. Из патрубка 3 пульпа поступает в коллектор 5, через сопла которого выходит не воздух, а жидкостно-газовая смесь, например гудронно-воздушная или водовоздушная пульпа с диаметром пузырьков воздуха ~ 1÷20 мкм. В результате, например, при окислении гудрона увеличивается массообмен в нижней части колонны 1 (фиг.1) как за счет струй жидкости, так и за счет резкого увеличения площади контакта гудрона (окисляемых примесей) с кислородом. Применительно же к очистке воды от нефтепродуктов основной эффект достигается за счет их контакта с микропузырьками в процессе их всплытия через толщу жидкости. В случае приготовления водовоздушной пульпы для рыбозащитных устройств получаются мощные водовоздушные струи.
Предлагаемое устройство, например, в производстве битума обеспечивает сокращение расхода воздуха на 15...30%, увеличение скорости окисления на 30. . . 60%, уменьшение концентрации кислорода в верхней части колонны до 2,5... 3,5% при прочих равных условиях.
название | год | авторы | номер документа |
---|---|---|---|
ДВУХКАМЕРНЫЙ СТРУЙНЫЙ АЭРАТОР | 2003 |
|
RU2229926C1 |
СМЕСИТЕЛЬ | 1995 |
|
RU2079352C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ СБОРА НЕФТЕПРОДУКТОВ С ВОДНОЙ ПОВЕРХНОСТИ | 2005 |
|
RU2294417C2 |
СПОСОБ ГИДРОДИНАМИЧЕСКОЙ МИКРОПУЗЫРЬКОВОЙ РЫБОЗАЩИТЫ ВОДОЗАБОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2144107C1 |
АЭРАТОР | 2004 |
|
RU2270174C2 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ | 1996 |
|
RU2120471C1 |
КАВИТАЦИОННЫЙ РЕАКТОР | 1995 |
|
RU2088321C1 |
СТАТИЧЕСКИЙ СМЕСИТЕЛЬ | 1994 |
|
RU2079350C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ТОПЛИВА И СТАТИЧЕСКИЙ СМЕСИТЕЛЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2097408C1 |
ГАЗОЖИДКОСТНОЙ СМЕСИТЕЛЬ | 2005 |
|
RU2293598C2 |
Изобретение относится к области смесительной техники и может быть использовано для очистки загрязненных стоков, получения газожидкостных смесей в различных областях техники, в частности при производстве битумов. Аэратор содержит насос, выход которого подключен к выходному патрубку, выполненному с первым воздухозаборным патрубком. Он снабжен также осевой насадкой, а выходной патрубок выполнен со вторым воздухозаборным патрубком. Осевая насадка размещена в выходном патрубке между первым и вторым воздухозаборными патрубками. Предлагаемое устройство, например, в производстве битума обеспечивает сокращение расхода воздуха на 15-30%, увеличение скорости окисления на 30-60%, уменьшение концентрации кислорода в верхней части колонны до 2,5-3,5% при прочих равных условиях. 5 з.п.ф-лы, 2 ил.
ИМПУЛЬСНЫЙ АЭРАТОР | 1997 |
|
RU2142433C1 |
СПОСОБ АЭРИРОВАНИЯ ЖИДКОСТИ | 1991 |
|
RU2036853C1 |
АЭРАТОР | 1991 |
|
RU2047572C1 |
US 4243521 А, 06.01.1981 | |||
СН 638164 А5, 15.09.1984. |
Авторы
Даты
2002-12-10—Публикация
2000-11-29—Подача