Изобретение относится к области судостроения и может быть использовано при создании судовых систем электродвижения с погружными (размещаемыми непосредственно в забортной воде) гребными электродвигателями.
Вынос электродвигателя из корпуса судна позволяет более рационально размещать оборудование и грузы в судовых помещениях, исключить проход вала гребного винта сквозь корпус, уменьшить массообъемные показатели двигателя.
Наиболее компактной является автономная комбинированная конструкция гребного винта с погружным электродвигателем, в которой отсутствует соединительный вал между двигателем и винтом, а ротор двигателя размещен непосредственно на бандажном кольце, охватывающем лопасти гребного винта.
Известен ряд устройств подобного типа (авт.св. СССР N 1654126, патент РФ N 5044285, разработки фирм ФРГ и США, изложенные в сборниках "Судостроение за рубежом", Л. : Судостроение, 1987, N 8, с. 63-67, 1990, N 10, c. 54-58; статье Jorg Heinemann "Elektrischer Motorpropeller-Stand der Entwicklung und Anwendung". Jahrbuch der Schiffbau technischen. Gesellschaft. Berlin. J. Springer. 1992.bd.86, z.88-94.
Конструкция комбинированного электродвигателя-гребного винта разработки фирм ФРГ в модификации, представленной в сборнике Jahrbuch der Schiffbau technischen. Gesellschaft. 1992. bd. 86, является наиболее близкой по техническим признакам к заявляемому устройству и принята в качестве прототипа.
В указанном устройстве - комбинированном электродвигателе-гребном винте, на бандажном кольце, охватывающем лопасти винта, размещены постоянные магниты, создающие радиально направленные магнитные потоки возбуждения синхронного электродвигателя, и железный магнитопровод, образующий сердечник (ярмо) ротора, по которому потоки возбуждения замыкаются в тангенциальном направлении.
Бандажное кольцо вместе с системой возбуждения входит в образованную в теле насадки кольцеобразную полость, открытую в сторону проточного канала. На внутренней поверхности этой полости установлен цилиндрический статор электродвигателя.
Вал винта вращается в опорах, которые при помощи стоек крепятся к телу насадки.
Недостатком этого устройства является снижение его надежности в случае несоосного положения вала гребного винта по отношению к цилиндрической поверхности статора, а также ухудшение маневренных характеристик гребного привода вследствие размещения на бандажном кольце массивных элементов - постоянных магнитов и ярма ротора.
Несоосность (эксцентриситет) может возникнуть при сборке устройства вследствие наличия конструктивных и технологических допусков, а также в результате износа подшипников и деформаций опорных стоек.
Заполненный водой зазор между статором и ротором является одновременно и радиальным немагнитным зазором электрической машины. Величина зазора влияет как на гидравлические потери от трения поверхности ротора о воду, так и на значение требуемой МДС системы возбуждения электродвигателя, и, следовательно, ее массу, габариты (а в случае использования электромагнитной системы возбуждения - также и расход мощности в обмотках). Выбор рабочего зазора в подобном устройстве требует одновременного учета ряда факторов, и его величина является, в значительной степени, компромиссным решением.
В частности, немецкими разработчиками устройства-прототипа для гребных установок большой мощности рекомендованы оптимальные величины зазора порядка 5 мм ("Судостроение за рубежом", 1987, N 8, с. 66).
Однако применяемые в настоящее время технологии монтажа винта в насадке допускают отклонения в соосности, соизмеримые с указанной величиной. Так, согласно действующим нормам (Ф. М.Кацман, Г.М.Кудреватый. Конструирование винторулевых комплексов морских судов. - Л.: Судостроение, 1974, с. 331) при диаметре винта в 3 м величина эксцентриситета может составить 4 мм. Если при этом в качестве опорных (радиальных) применить водосмазываемые подшипники скольжения (капролоновые, резиновые), износ которых при диаметре вала 200-300 мм может составить -2,5 мм на одну сторону (см. ОСТ5.4183-76. Подшипники гребных и дейдвудных валов капролоновые), то суммарное смещение оси вала превысит величину зазора. В связи с этим для реализации подобных устройств необходима разработка таких конструктивных решений крепления оси винта и технологий монтажа, которые позволили бы существенно уменьшить получаемую при сборке несоосность. При этом малый эксплуатационный износ может быть получен только при использовании маслосмазываемых подшипников, что затрудняется размещением устройства в воде вне корпуса судна, особенно в случае его применения в составе поворотных (вращающихся вокруг вертикальной оси) движительно-рулевых колонок.
Смещение ротора в расточке статора приводит к появлению сил одностороннего магнитного тяжения, создающих дополнительные нагрузки на подшипники (И. Г.Шубов. Шум и вибрация электрических машин. - Л: Энергоатомиздат. 1986, с. 63). Как показывают расчетные оценки, даже в случае использования подшипников качения и значительном (приблизительно, вдвое) уменьшении конструктивно-монтажного допуска на соосность при возможном эксцентриситете порядка 2 мм на вал устройства-прототипа будет действовать сила одностороннего тяжения, соизмеримая по величине с нагрузкой на радиальные подшипники от веса винта и приводящая к их ускоренному износу. В то же время, увеличение зазора с целью уменьшения влияния указанных факторов приведет к ухудшению показателей системы возбуждения.
Заявляемое изобретение направлено на повышение надежности комбинированного электродвигателя-гребного винта и улучшение его маневренных характеристик.
Для этого в известном комбинированном электродвигателе-гребном винте, содержащем гребной винт, насадку, в теле которой имеется кольцевая полость, открытая в сторону проточного канала, входящее в эту полость и охватывающее лопасти гребного винта бандажное кольцо с установленной на нем системой возбуждения, закрепленный на стенке полости статор электродвигателя и крепящуюся к телу насадки опорную систему вала винта, его статор разделен на две части, которые имеют форму плоских колец, закрепленных на противоположных стенках полости, между которыми размещено бандажное кольцо с полюсами системы возбуждения, расположенными по окружности бандажного кольца с чередующейся полярностью, причем плоскости торцевых активных поверхностей кольцевых статоров перпендикулярны оси вращения гребного винта.
В предлагаемой конструкции устройства может быть допущена большая радиальная несоосность, чем у устройства-прототипа, без возникновения значительных сил одностороннего магнитного тяжения, а следовательно, и дополнительной нагрузки на подшипники.
Разделение статора на две части, между которыми размещено бандажное кольцо с полюсами системы возбуждения, позволяет сохранить работоспособность гребного привода (на частичной мощности) в случае выхода из строя одного из них.
Аксиальные перемещения и неточность положения бандажного кольца (ротора) по отношению к статорам не изменяют величины суммарного магнитного потокосцепления потока возбуждения с обмотками статора и не будут приводить к появлению аксиальных сил магнитного тяжения.
Указанные обстоятельства позволяют снизить требования к точности положения вала по отношению к: статору, а также создают условия для применения водосмазываемых подшипников скольжения, не нуждающихся в наличии систем масляной смазки.
В результате использования предлагаемых технических решений надежность устройства может быть существенно повышена. Отсутствие на роторе специального магнитопровода (ярма) для замыкания магнитных потоков позволяет снизить момент инерции ротора и тем самым улучшить маневренные характеристики гребного привода, а также уменьшить весовую нагрузку на опорные подшипники.
Предложенное устройство имеет по сравнению с прототипом следующие отличительные признаки:
1. Применение торцевой конструкции электродвигателя, в которой рабочая поверхность плоского кольцевого статора перпендикулярна оси вращения, а не соосна с ней.
2. Разделение статора на две части, располагаемые по обоим сторонам ротора.
3. Аксиальное, а не радиальное расположение полюсов ротора и отсутствие на нем специального магнитопровода (ярма), для замыкания потока в тангенциальном направлении.
Эти признаки в совокупности и только при их совместном введении в предложенное техническое решение, позволяют достигнуть поставленной задачи - повысить надежность и улучшить маневренные характеристики устройства.
Сущность изобретения поясняется рисунками, где на фиг. 1 приведена конструктивная схема комбинированного электродвигателя-гребного винта (продольный вид), а на фиг.2 - схема расположения полюсов ротора (поперечный вид).
Устройство содержит гребной винт 1, вал которого вращается в опоре 2, крепящейся к телу насадки 3 при помощи стоек 4.
Гребной электродвигатель синхронного типа имеет два статора, выполненные в виде плоских колец 5, установленных на противоположных стенках 6 кольцевой полости 7 в теле насадки 3.
Винт охвачен бандажным кольцом 8, на котором аксиально по окружности расположены, например, постоянные магниты 9, образующие в тангенциальном направлении систему чередующихся магнитных полюсов. Снаружи статоры с якорными обмотками 10 и постоянные магниты 9 ротора защищены соответствующими покрытиями от воздействия окружающей воды (на чертеже не показано).
Система возбуждения электродвигателя может быть также выполнена в виде электромагнитов, питание к обмоткам которых должно подводиться при помощи вращающегося трансформатора и расположенного на роторе выпрямителя.
Устройство работает следующим образом. При подаче многофазного (трехфазного) переменного тока в обмотки статоров, в них образуются бегущие синхронно в одном направлении волны токов. Они взаимодействуют с магнитными полями возбуждения, создаваемыми, например, постоянными магнитами и проходящими сквозь ротор от одного статора к другому.
Возникающий магнитный момент приводит во вращение бандажное кольцо 8, на котором закреплена система возбуждения 9, и охватываемый им гребной винт 1. Частота вращения винта регулируется путем изменения частоты переменного тока.
Как показали проектно-расчетные проработки, по сравнению с прототипом, допустимая величина радиальной несоосности статора и ротора в предлагаемой конструкции может быть увеличена приблизительно вдвое без ухудшения характеристик системы возбуждения; при этом наличие эксцентриситета или осевого смещения ротора не приводит к появлению значительных сил одностороннего магнитного тяжения как в радиальном, так и в аксиальном направлениях. В результате конструкция устройства может быть упрощена, а его надежность повышена.
Общий маховый момент гребного привода типа комбинированный электродвигатель-гребной винт и нагрузка на опорные подшипники уменьшаются на 20-25% вследствие уменьшения массы элементов, установленных на бандажном кольце.
название | год | авторы | номер документа |
---|---|---|---|
КОМБИНИРОВАННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ - ГРЕБНОЙ ВИНТ | 1992 |
|
RU2045448C1 |
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ | 1992 |
|
RU2047539C1 |
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ | 1996 |
|
RU2122507C1 |
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ | 1992 |
|
RU2057684C1 |
Движительный комплекс с кольцевым электродвигателем для подводных аппаратов большой автономности | 2019 |
|
RU2722873C1 |
НАПРАВЛЯЮЩАЯ НАСАДКА ГРЕБНОГО ВИНТА | 1995 |
|
RU2096254C1 |
РУЛЕВОЙ КОМПЛЕКС СУДНА | 1995 |
|
RU2081787C1 |
ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ ПОСТОЯННОГО ТОКА | 1993 |
|
RU2076427C1 |
ОДНОВИНТОВОЕ СУДНО | 1993 |
|
RU2042572C1 |
КОМБИНИРОВАННЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ НАСОС | 1995 |
|
RU2105905C1 |
Использование: судостроение, при создании судовых систем электродвижения с погружными гребными электродвигателями. Сущность изобретения: в электродвигателе-гребном винте, содержащем гребной винт, насадку, в теле которой имеется кольцевая полость, открытая в сторону проточного канала, входящее в эту полость и охватывающее лопасти гребного винта бандажное кольцо с установленной на нем системой возбуждения, закрепленный на стенке полости статор электровдигателя и крепящуюся к телу насадки опорную систему вала винта, статор разделен на две части, которые имеют форму плоских колец, закрепленных на противоположных стенках полости, между которыми размещено бандажное кольцо с полюсами системы возбуждения, расположенными по окружности бандажного кольца с чередующейся полярностью, причем плоскости торцевых активных поверхностей кольцевых статоров перпендикулярны оси вращения гребного винта. Использование изобретения допускает большие величины радиального и аксиального смещения ротора, не приводящие к потери работоспособности устройства, и приводит к снижению махового момента и нагрузки на опорные подшипники на 20-25%. 2 ил.
Комбинированный электродвигатель - гребной винт, содержащий гребной винт, насадку с открытой в сторону проточного канала кольцевой полостью, входящее в эту полость и охватывающее лопасти гребного винта бандажное кольцо с установленной на нем системой возбуждения, закрепленный на стенке полости статор электродвигателя и крепящуюся к теле насадки опорную систему винта, отличающийся тем, что его статор разделен на две части, имеющие форму плоских колец, закрепленных на противоположных стенках полости, между которыми размещено бандажное кольцо с полюсами системы возбуждения, расположенными по окружности бандажного кольца с чередующейся полярностью, причем плоскости торцевых активных поверхностей кольцевых статоров перпендикулярны оси вращения гребного винта.
Jahrbuch der Schiffbau technischen | |||
Gessellshaft | |||
Berlin | |||
J | |||
Springer, 1992, рис | |||
Пюпитр для работы на пишущих машинах | 1922 |
|
SU86A1 |
Шланговое соединение | 0 |
|
SU88A1 |
Авторы
Даты
1998-07-20—Публикация
1996-06-11—Подача