КОМБИНИРОВАННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ - ГРЕБНОЙ ВИНТ Российский патент 1998 года по МПК B63H5/14 B63H23/24 

Описание патента на изобретение RU2115590C1

Изобретение относится к области судостроения и может быть использовано при создании судовых систем электродвижения с погружными (размещаемыми непосредственно в забортной воде) гребными электродвигателями.

Вынос электродвигателя из корпуса судна позволяет более рационально размещать оборудование и грузы в судовых помещениях, исключить проход вала гребного винта сквозь корпус, уменьшить массообъемные показатели двигателя.

Наиболее компактной является автономная комбинированная конструкция гребного винта с погружным электродвигателем, в которой отсутствует соединительный вал между двигателем и винтом, а ротор двигателя размещен непосредственно на бандажном кольце, охватывающем лопасти гребного винта.

Известен ряд устройств подобного типа (авт.св. СССР N 1654126, патент РФ N 5044285, разработки фирм ФРГ и США, изложенные в сборниках "Судостроение за рубежом", Л. : Судостроение, 1987, N 8, с. 63-67, 1990, N 10, c. 54-58; статье Jorg Heinemann "Elektrischer Motorpropeller-Stand der Entwicklung und Anwendung". Jahrbuch der Schiffbau technischen. Gesellschaft. Berlin. J. Springer. 1992.bd.86, z.88-94.

Конструкция комбинированного электродвигателя-гребного винта разработки фирм ФРГ в модификации, представленной в сборнике Jahrbuch der Schiffbau technischen. Gesellschaft. 1992. bd. 86, является наиболее близкой по техническим признакам к заявляемому устройству и принята в качестве прототипа.

В указанном устройстве - комбинированном электродвигателе-гребном винте, на бандажном кольце, охватывающем лопасти винта, размещены постоянные магниты, создающие радиально направленные магнитные потоки возбуждения синхронного электродвигателя, и железный магнитопровод, образующий сердечник (ярмо) ротора, по которому потоки возбуждения замыкаются в тангенциальном направлении.

Бандажное кольцо вместе с системой возбуждения входит в образованную в теле насадки кольцеобразную полость, открытую в сторону проточного канала. На внутренней поверхности этой полости установлен цилиндрический статор электродвигателя.

Вал винта вращается в опорах, которые при помощи стоек крепятся к телу насадки.

Недостатком этого устройства является снижение его надежности в случае несоосного положения вала гребного винта по отношению к цилиндрической поверхности статора, а также ухудшение маневренных характеристик гребного привода вследствие размещения на бандажном кольце массивных элементов - постоянных магнитов и ярма ротора.

Несоосность (эксцентриситет) может возникнуть при сборке устройства вследствие наличия конструктивных и технологических допусков, а также в результате износа подшипников и деформаций опорных стоек.

Заполненный водой зазор между статором и ротором является одновременно и радиальным немагнитным зазором электрической машины. Величина зазора влияет как на гидравлические потери от трения поверхности ротора о воду, так и на значение требуемой МДС системы возбуждения электродвигателя, и, следовательно, ее массу, габариты (а в случае использования электромагнитной системы возбуждения - также и расход мощности в обмотках). Выбор рабочего зазора в подобном устройстве требует одновременного учета ряда факторов, и его величина является, в значительной степени, компромиссным решением.

В частности, немецкими разработчиками устройства-прототипа для гребных установок большой мощности рекомендованы оптимальные величины зазора порядка 5 мм ("Судостроение за рубежом", 1987, N 8, с. 66).

Однако применяемые в настоящее время технологии монтажа винта в насадке допускают отклонения в соосности, соизмеримые с указанной величиной. Так, согласно действующим нормам (Ф. М.Кацман, Г.М.Кудреватый. Конструирование винторулевых комплексов морских судов. - Л.: Судостроение, 1974, с. 331) при диаметре винта в 3 м величина эксцентриситета может составить 4 мм. Если при этом в качестве опорных (радиальных) применить водосмазываемые подшипники скольжения (капролоновые, резиновые), износ которых при диаметре вала 200-300 мм может составить -2,5 мм на одну сторону (см. ОСТ5.4183-76. Подшипники гребных и дейдвудных валов капролоновые), то суммарное смещение оси вала превысит величину зазора. В связи с этим для реализации подобных устройств необходима разработка таких конструктивных решений крепления оси винта и технологий монтажа, которые позволили бы существенно уменьшить получаемую при сборке несоосность. При этом малый эксплуатационный износ может быть получен только при использовании маслосмазываемых подшипников, что затрудняется размещением устройства в воде вне корпуса судна, особенно в случае его применения в составе поворотных (вращающихся вокруг вертикальной оси) движительно-рулевых колонок.

Смещение ротора в расточке статора приводит к появлению сил одностороннего магнитного тяжения, создающих дополнительные нагрузки на подшипники (И. Г.Шубов. Шум и вибрация электрических машин. - Л: Энергоатомиздат. 1986, с. 63). Как показывают расчетные оценки, даже в случае использования подшипников качения и значительном (приблизительно, вдвое) уменьшении конструктивно-монтажного допуска на соосность при возможном эксцентриситете порядка 2 мм на вал устройства-прототипа будет действовать сила одностороннего тяжения, соизмеримая по величине с нагрузкой на радиальные подшипники от веса винта и приводящая к их ускоренному износу. В то же время, увеличение зазора с целью уменьшения влияния указанных факторов приведет к ухудшению показателей системы возбуждения.

Заявляемое изобретение направлено на повышение надежности комбинированного электродвигателя-гребного винта и улучшение его маневренных характеристик.

Для этого в известном комбинированном электродвигателе-гребном винте, содержащем гребной винт, насадку, в теле которой имеется кольцевая полость, открытая в сторону проточного канала, входящее в эту полость и охватывающее лопасти гребного винта бандажное кольцо с установленной на нем системой возбуждения, закрепленный на стенке полости статор электродвигателя и крепящуюся к телу насадки опорную систему вала винта, его статор разделен на две части, которые имеют форму плоских колец, закрепленных на противоположных стенках полости, между которыми размещено бандажное кольцо с полюсами системы возбуждения, расположенными по окружности бандажного кольца с чередующейся полярностью, причем плоскости торцевых активных поверхностей кольцевых статоров перпендикулярны оси вращения гребного винта.

В предлагаемой конструкции устройства может быть допущена большая радиальная несоосность, чем у устройства-прототипа, без возникновения значительных сил одностороннего магнитного тяжения, а следовательно, и дополнительной нагрузки на подшипники.

Разделение статора на две части, между которыми размещено бандажное кольцо с полюсами системы возбуждения, позволяет сохранить работоспособность гребного привода (на частичной мощности) в случае выхода из строя одного из них.

Аксиальные перемещения и неточность положения бандажного кольца (ротора) по отношению к статорам не изменяют величины суммарного магнитного потокосцепления потока возбуждения с обмотками статора и не будут приводить к появлению аксиальных сил магнитного тяжения.

Указанные обстоятельства позволяют снизить требования к точности положения вала по отношению к: статору, а также создают условия для применения водосмазываемых подшипников скольжения, не нуждающихся в наличии систем масляной смазки.

В результате использования предлагаемых технических решений надежность устройства может быть существенно повышена. Отсутствие на роторе специального магнитопровода (ярма) для замыкания магнитных потоков позволяет снизить момент инерции ротора и тем самым улучшить маневренные характеристики гребного привода, а также уменьшить весовую нагрузку на опорные подшипники.

Предложенное устройство имеет по сравнению с прототипом следующие отличительные признаки:
1. Применение торцевой конструкции электродвигателя, в которой рабочая поверхность плоского кольцевого статора перпендикулярна оси вращения, а не соосна с ней.

2. Разделение статора на две части, располагаемые по обоим сторонам ротора.

3. Аксиальное, а не радиальное расположение полюсов ротора и отсутствие на нем специального магнитопровода (ярма), для замыкания потока в тангенциальном направлении.

Эти признаки в совокупности и только при их совместном введении в предложенное техническое решение, позволяют достигнуть поставленной задачи - повысить надежность и улучшить маневренные характеристики устройства.

Сущность изобретения поясняется рисунками, где на фиг. 1 приведена конструктивная схема комбинированного электродвигателя-гребного винта (продольный вид), а на фиг.2 - схема расположения полюсов ротора (поперечный вид).

Устройство содержит гребной винт 1, вал которого вращается в опоре 2, крепящейся к телу насадки 3 при помощи стоек 4.

Гребной электродвигатель синхронного типа имеет два статора, выполненные в виде плоских колец 5, установленных на противоположных стенках 6 кольцевой полости 7 в теле насадки 3.

Винт охвачен бандажным кольцом 8, на котором аксиально по окружности расположены, например, постоянные магниты 9, образующие в тангенциальном направлении систему чередующихся магнитных полюсов. Снаружи статоры с якорными обмотками 10 и постоянные магниты 9 ротора защищены соответствующими покрытиями от воздействия окружающей воды (на чертеже не показано).

Система возбуждения электродвигателя может быть также выполнена в виде электромагнитов, питание к обмоткам которых должно подводиться при помощи вращающегося трансформатора и расположенного на роторе выпрямителя.

Устройство работает следующим образом. При подаче многофазного (трехфазного) переменного тока в обмотки статоров, в них образуются бегущие синхронно в одном направлении волны токов. Они взаимодействуют с магнитными полями возбуждения, создаваемыми, например, постоянными магнитами и проходящими сквозь ротор от одного статора к другому.

Возникающий магнитный момент приводит во вращение бандажное кольцо 8, на котором закреплена система возбуждения 9, и охватываемый им гребной винт 1. Частота вращения винта регулируется путем изменения частоты переменного тока.

Как показали проектно-расчетные проработки, по сравнению с прототипом, допустимая величина радиальной несоосности статора и ротора в предлагаемой конструкции может быть увеличена приблизительно вдвое без ухудшения характеристик системы возбуждения; при этом наличие эксцентриситета или осевого смещения ротора не приводит к появлению значительных сил одностороннего магнитного тяжения как в радиальном, так и в аксиальном направлениях. В результате конструкция устройства может быть упрощена, а его надежность повышена.

Общий маховый момент гребного привода типа комбинированный электродвигатель-гребной винт и нагрузка на опорные подшипники уменьшаются на 20-25% вследствие уменьшения массы элементов, установленных на бандажном кольце.

Похожие патенты RU2115590C1

название год авторы номер документа
КОМБИНИРОВАННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ - ГРЕБНОЙ ВИНТ 1992
  • Кирпичников В.Ю.
  • Рябошапка П.П.
  • Савенко В.В.
RU2045448C1
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ 1992
  • Кирпичников В.Ю.
  • Кильдеев Р.И.
  • Пустобаев В.Д.
  • Рябошапка П.П.
  • Савенко В.В.
RU2047539C1
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ 1996
  • Кирпичников В.Ю.
  • Кильдеев Р.И.
  • Пустобаев В.Д.
  • Савенко В.В.
  • Попинов В.Р.
  • Грушецкий И.В.
RU2122507C1
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ 1992
  • Желтухин И.Д.
  • Анчиков С.Л.
  • Куликов С.В.
  • Сизов И.И.
  • Удачин В.М.
  • Храмкин М.Ф.
RU2057684C1
Движительный комплекс с кольцевым электродвигателем для подводных аппаратов большой автономности 2019
  • Бачурин Алексей Андреевич
  • Грызлова Елена Николаевна
  • Зверева Любовь Александровна
  • Трухин Яков Олегович
  • Аполлонов Евгений Михайлович
  • Клинцевич Вячеслав Юрьевич
  • Михайлов Валерий Михайлович
RU2722873C1
НАПРАВЛЯЮЩАЯ НАСАДКА ГРЕБНОГО ВИНТА 1995
  • Удалов Г.В.
  • Кирпичников В.Ю.
  • Савенко В.В.
  • Бахмендо Я.Г.
RU2096254C1
РУЛЕВОЙ КОМПЛЕКС СУДНА 1995
  • Маковский А.Г.
  • Немзер А.И.
RU2081787C1
ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ ПОСТОЯННОГО ТОКА 1993
  • Андреев Н.М.
  • Горчинский Ю.Н.
  • Кузнецов В.И.
  • Куклинов В.И.
  • Сосков В.А.
RU2076427C1
ОДНОВИНТОВОЕ СУДНО 1993
  • Галушина М.В.
  • Каневский Г.И.
  • Куликов С.В.
  • Щередин В.Н.
RU2042572C1
КОМБИНИРОВАННЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ НАСОС 1995
  • Малышкин Н.Н.
  • Шугаев В.Г.
RU2105905C1

Реферат патента 1998 года КОМБИНИРОВАННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ - ГРЕБНОЙ ВИНТ

Использование: судостроение, при создании судовых систем электродвижения с погружными гребными электродвигателями. Сущность изобретения: в электродвигателе-гребном винте, содержащем гребной винт, насадку, в теле которой имеется кольцевая полость, открытая в сторону проточного канала, входящее в эту полость и охватывающее лопасти гребного винта бандажное кольцо с установленной на нем системой возбуждения, закрепленный на стенке полости статор электровдигателя и крепящуюся к телу насадки опорную систему вала винта, статор разделен на две части, которые имеют форму плоских колец, закрепленных на противоположных стенках полости, между которыми размещено бандажное кольцо с полюсами системы возбуждения, расположенными по окружности бандажного кольца с чередующейся полярностью, причем плоскости торцевых активных поверхностей кольцевых статоров перпендикулярны оси вращения гребного винта. Использование изобретения допускает большие величины радиального и аксиального смещения ротора, не приводящие к потери работоспособности устройства, и приводит к снижению махового момента и нагрузки на опорные подшипники на 20-25%. 2 ил.

Формула изобретения RU 2 115 590 C1

Комбинированный электродвигатель - гребной винт, содержащий гребной винт, насадку с открытой в сторону проточного канала кольцевой полостью, входящее в эту полость и охватывающее лопасти гребного винта бандажное кольцо с установленной на нем системой возбуждения, закрепленный на стенке полости статор электродвигателя и крепящуюся к теле насадки опорную систему винта, отличающийся тем, что его статор разделен на две части, имеющие форму плоских колец, закрепленных на противоположных стенках полости, между которыми размещено бандажное кольцо с полюсами системы возбуждения, расположенными по окружности бандажного кольца с чередующейся полярностью, причем плоскости торцевых активных поверхностей кольцевых статоров перпендикулярны оси вращения гребного винта.

Документы, цитированные в отчете о поиске Патент 1998 года RU2115590C1

Jahrbuch der Schiffbau technischen
Gessellshaft
Berlin
J
Springer, 1992, рис
Пюпитр для работы на пишущих машинах 1922
  • Лавровский Д.П.
SU86A1
Шланговое соединение 0
  • Борисов С.С.
SU88A1

RU 2 115 590 C1

Авторы

Горчинский Ю.Н.

Кузнецов В.И.

Куклинов В.Б.

Даты

1998-07-20Публикация

1996-06-11Подача