Изобретение касается утилизации вредностей, содержащихся в отходящих газах, в частности способа переработки отходящих газов магниевого производства, преимущественно отходящих газов, содержащих хлор и/или хлороводород.
Известен способ очистки воздуха от кислых газов, в котором очищаемый воздух предварительно смешивают с аэрозолем щелочного раствора и пропускают через увлажненную мерсеризованную древесину, т.е. взаимодействие, содержащегося в аэрозоли компонента, в присутствии жидкости и разделение образующейся суспензии в слое мерсеризованной древесины [1].
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе потоку газа оказывается большое гидравлическое сопротивление слоем древесины.
Известен способ очистки газов от хлора, в котором газы обрабатываются суспензией карбоната кальция, при этом pH среды 4,5-6, т.е. взаимодействие с компонентом - Ca(CO3)2 - в присутствии жидкости [2].
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе применяется кислая (pH 4,5-6) нагретая суспензия, что существенно усложняет технологию переработки газов.
Известен способ очистки газов от хлора и хлороводорода, в котором промывают отходящие газы магниевого производства известковым молоком, т.е. взаимодействие с компонентом - CaO - в присутствии жидкости [3].
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе известковое молоко, находящееся в циркуляционном баке, непрерывно перемешивают для предотвращения выпадения малорастворимого гидроксида кальция из объема суспензии, что существенно усложняет технологию переработки газов.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ переработки отходов магниевого производства, в котором выщелачивание проводят пропусканием газов, содержащих хлороводород, через слой частиц твердых отходов в присутствии воды и отделением нерастворимой части магниевых шламов от хлормагниевых щелоков, т.е. путем взаимодействия отходящих газов и оксидного компонента в присутствии воды, разделения образующейся при этом суспензии на жидкость и нерастворимое вещество [4].
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе взаимодействие осуществляют пропусканием, газов, содержащих хлороводород, через слой частиц, следовательно, потоку газов необходимо преодолевать гидравлическое сопротивление слоя частиц. Следует отметить, что в отходящих газах магниевого производства в пыли содержится оксид магния (MgO) и хлорид магния (MgCl2). Так, в частности, в пыли вращающихся печей содержится MgO - 0,5...1 мас.%, MgCl2 37...38 мас.% [3]. Это приводит к локальному образованию цемента в слое при их взаимодействии в присутствии воды и, следовательно, к увеличению гидравлического сопротивления слоя. Для опытной установки сопротивление слоя составило 2000Па [5], что эквивалентно сопротивлению двух последовательно расположенных циклонов типа СИОТ. Таким образом, наличие относительно высокого гидравлического сопротивления слоя частиц является недостатком способа-прототипа.
Следует отметить, что по мере срабатывания слоя частиц, в результате выщелачивания и растворения водой, необходимо слой пополнять, причем частицами определенной фракции. Конкретно, 10...20 мм, для укрупненной модели, испытанной на А.О. "Ависма" [5]. Эта операция значительно усложняет технологию переработки отходящих газов и, следовательно, является недостатком способа-прототипа.
Задача изобретения повышение экономичности, надежности технологии переработки отходящих газов магниевого производства.
Технический результат, который может быть получен при осуществлении изобретения, заключается в следующем:
снижение гидравлического сопротивления потоку отходящих газов в технологии переработки;
упрощение технологии переработки отходящих газов.
Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе переработки отходов магниевого производства путем:
взаимодействия отходящих газов с оксидным компонентом в присутствии жидкости,
разделения получаемой при этом суспензии,
особенность заключается в том, что:
взаимодействие осуществляют последовательно: сначала отходящих газов с оксидным компонентом, затем полученной газовзвеси с жидкостью,
взаимодействие с жидкостью осуществляют рециркуляцией в процесс взаимодействия жидкости, получаемой после разделения суспензии.
Кроме того, особенность способа заключается в том, что в качестве оксидных компонентов для выщелачивания используют молотый оксидный материал, взятый из ряда: оксид кальция, оксид магния (брусит, обожженный магнезит).
Следует также отметить, что жидкость рециркулируют до достижения в ней концентрации суммы солей 330...350 кг/м3.
При прочих равных условиях вышеуказанный новый порядок действий, новые приемы их выполнения обеспечивают достижение технического результата при осуществлении заявленного изобретения. Полученный технический результат заключается в следующем:
снижение гидравлического сопротивления потоку отходящих газов путем исключения слоя частиц из технологии переработки,
упрощение технологии переработки отходящих газов путем исключения операции создания и поддержания в рабочем состоянии слоя частиц в технологии переработки.
При подаче оксидного компонента в поток отходящих газов, подаваемых на переработку, компонент распределяется в потоке газов и совместно поступает на взаимодействие с жидкостью. Жидкость поглощает вредности из отходящих газов и улавливает оксидный компонент. В результате этого взаимодействия в жидкой фазе осуществляется процесс химической реакции вредностей отходящих газов с оксидным компонентом. Отличительной особенностью изобретения является то, что сначала компонент распределяется в потоке отходящих газов, следовательно, более равномерно перемешивается с вредностями газов, и после уже взаимодействует в виде полученной газовзвеси с жидкостью. Нерастворимые (нехлорированные) примеси оксидного компонента и растворимые продукты взаимодействия удаляются вместе с жидкостью из объема процесса взаимодействия в виде суспензии. Суспензия поступает на процесс разделения на жидкость и нерастворимое вещество. Эта технология переработки отходящих газов магниевого производства позволяет отказаться от процесса пропускания газов через слой частиц, что значительно снижает гидравлическое сопротивление протоку газов и упрощает технологию переработки.
Жидкость после процесса разделения суспензии вновь подают в процесс взаимодействия, т. е. рециркулируют. Опытным путем установлено, что при достижении в ней концентрации суммы солей свыше 330-350 кг/м3 поглотительная способность жидкости не обеспечивает очистку газов до санитарных норм и ее заменяют на свежую воду.
Анализ уровня техники в отношении совокупности всех существенных признаков заявленного технического решения показывает, что предложенный способ соответствует критерию "новизна".
Проверка соответствия заявленного изобретения требованиям "изобретательского уровня" в отношении совокупности существенных отличительных признаков свидетельствует о том, что предлагаемый способ не следует для специалистов явным образом из известного уровня техники.
Сведения, подтверждающие возможность осуществления изобретения, приведены в примерах.
Примеры. Переработку отходящих газов магниевого производства ведут на промышленной газоочистке, включающей циркуляционный бак емкостью 35 м3, соединенный с ним центробежный насос 6НФ производительностью 450 м3/ч и полый скруббер диаметром 5 м и высотой 14,7 м. Скруббер соединен с насосом и баком. Дополнительно в магистраль, соединяющую насос со скруббером, врезан шнековый питатель молотого реагента, а заборный патрубок насоса 6НФ поднят на 2/3 высоты бака. После заполнения циркуляционного бака технической водой включают привод насоса 6НФ и орошают водой скруббер. Подают в скруббер отходящие газы магниевого производства 120 тыс.м3/ч и одновременно шнековым питателем подают молотый компонент в поток отходящих газов, подаваемых в скруббер. Суспензию, образующуюся в результате орошения скруббера, подают в циркуляционный бак. В баке суспензию отстаивают и осветленную часть -жидкость- рециркулируют. Устанавливают расход молотого реагента по степени очистки газов. В очищенных газах не должно содержаться HCl, а Cl2 - до 4 мг/м3. При появлении в очищенных газах по мере насыщения циркулирующей жидкости солями следов HCl или Cl2 около 4 мг/м3 производится замена жидкости. Замеряется концентрация суммы солей в циркулирующей жидкости перед ее заменой. Замеряют перепад давления в потоке отходящих газов на входе и выходе скруббера.
Пример 1. В качестве оксидного компонента применяют молотую известь (CaO). Концентрация суммы солей 330...350 кг/м3, перепад давления 200 Па.
Пример 2. В качестве оксидного компонента применяют обожженный магнезит (MgO). Концентрация суммы солей 330...350 кг/м3, перепад давления 200 Па.
Пример 3. В качестве оксидного компонента применяют брусит (Mg(OH)2). Концентрация суммы солей 330...350 кг/м3, перепад давления 200 Па.
Предлагаемый способ переработки отходящих газов может быть реализован на любой мокрой газоочистке, при применении оксидного компонента, реагирующего с хлороводородной кислотой и хлористой кислотой, и не требует значительных капитальных вложений.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ХЛОРА И/ИЛИ ХЛОРИСТОГО ВОДОРОДА | 1996 |
|
RU2141371C1 |
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ МАГНИЕВОГО ПРОИЗВОДСТВА | 1999 |
|
RU2169037C1 |
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ТИТАНО-МАГНИЕВОГО ПРОИЗВОДСТВА | 2001 |
|
RU2201792C2 |
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ | 2001 |
|
RU2201791C2 |
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ХЛОРСОДЕРЖАЩИХ ГАЗОВ МАГНИЕВОГО ПРОИЗВОДСТВА | 1999 |
|
RU2166008C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ТИТАНО-МАГНИЕВОГО ПРОИЗВОДСТВА | 1998 |
|
RU2141456C1 |
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ | 2001 |
|
RU2186155C1 |
СПОСОБ РАЗДЕЛЕНИЯ МЕТАЛЛО-ОКСИДНО-СОЛЕВЫХ РАСПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2172354C2 |
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ХЛОРСОДЕРЖАЩИХ ОТХОДЯЩИХ ГАЗОВ ТИТАНО-МАГНИЕВОГО ПРОИЗВОДСТВА | 2003 |
|
RU2245394C1 |
СПОСОБ РАЗДЕЛЕНИЯ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2133294C1 |
Использование: изобретение касается утилизации вредностей, содержащихся в отходящих газах, в частности к способа переработки отходящих газов магниевого производства, преимущественно отходящих газов, содержащих хлор и/или хлороводород. Сущность изобретения: способ переработки отходящих газов магниевого производства путем взаимодействия с оксидным компонентом в присутствии жидкости, разделения образующейся при этом суспензии. Новым в способе является то, что взаимодействие осуществляют последовательно: сначала отходящих газов с оксидным компонентом, затем полученной газовзвеси с жидкостью, путем рециркуляции ее в процесс взаимодействия после разделения суспензии. Технический результат: снижение гидравлического сопротивления потоку отходящих газов в технологии переработки и упрощение технологии переработки отходящих газов. 4 з.п.ф-лы.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство, 1095967, B 01 D 53/14, 1984 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, авторское свидетельство, 1151275, B 01 D 53/14, 1985 | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Эйдензон М.А | |||
Металлургия магния и других легких металлов | |||
- М.: Металлургия, 1974, с | |||
Способ очистки нефти и нефтяных продуктов и уничтожения их флюоресценции | 1921 |
|
SU31A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
SU, авторское свидетельство 821518, C 22 B 7/00, 1981 | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Мильграм Б.Л | |||
и др | |||
Совместная утилизация твердых и газообразных отходов магниевого производства | |||
- Комплексное использование минерального сырья, N 10, 1980, с.50 - 53. |
Авторы
Даты
1998-07-20—Публикация
1996-11-19—Подача