ЧУГУН Российский патент 1998 года по МПК C22C37/10 

Описание патента на изобретение RU2116371C1

Изобретение относится к черной металлургии, конкретно к составам чугуна, используемым в качестве товарного ванадиевого чугуна, а также для конвертерного передела с получением ванадиевого шлака и углеродистого полупродукта.

Наиболее близким по технической сущности и достигаемому результату является чугун, содержащий, мас.%:
Углерод - 2,4 - 3,0
Кремний - 0,8 - 1,4
Марганец - 0,5 - 1,5
Хром - 0,15 - 0,4
Никель - 0,1 - 0,4
Ванадий - 0,1 - 0,3
Алюминий - 0,02 - 0,2
Медь - 0,02 - 0,2
Титан - 0,35 - 0,8
Церий - 0,01 - 0,05
Молибден - 0,05 - 0,72
Кобальт - 0,08 - 0,16
Германий - 0,03 - 0,07
Железо - Остальное
Недостатками известного сплава являются большие затраты на железорудную часть шихты и топлива из-за высокой температуры плавления образующихся соединений, что значительно повышает удельный расход кокса на производство чугуна. В известном чугуне также отсутствуют компоненты, которые способствуют повышению извлечения ванадия, хрома и титана.

Новый состав дополнительно содержит фосфор, серу и скандий и имеет следующее соотношение компонентов в сплаве, мас.%:
Титан - 0,02 - 0,6
Фосфор - 0,015 - 0,10
Сера - 0,010 - 0,050
Медь - 0,01 - 0,12
Никель - 0,02 - 0,30
Кобальт - 0,001 - 0,1400
Хром - 0,02 - 0,9
Алюминий - 0,01 - 0,15
Германий - 0,0001 - 0,002
Скандий - 0,0001 - 0,015
Железо - Остальное
Использование указанного передельного чугуна позволяет снизить затраты на железорудную часть шихты и топлива на 5 - 10%, увеличить степень перехода ванадия в шлак на 0,9 - 1,5%, повысить степень извлечения хрома и титана на 1,3 - 2,2%, а также улучшить износостойкость конструкционных марок сталей и чугуна (см. таблицу).

Введенный в состав чугуна дополнительно германий по общим химическим и некоторым физическим свойствам коррелируется с кремнием. Роль растворенного в чугуне германия, взятого в предложенном соотношении (0,0001 - 0,002 мас. %), сводится к тому, что германий при окислении чугуна совместно с окислами железа формирует силикатную составляющую шлака, необходимую для формирования и роста комплексного шпинелида. При этом наличие германия в передельном чугуне обуславливает присутствие окислов германия в шлаке, что способствует увеличению предела растворимости комплексного шпинелида в силикатной составляющей шлака и повышает полноту извлечения ванадия в шлак, снижая тем самым его потери. Снижение концентрации германия в чугуне менее 0,0001 мас.% и увеличение выше 0,002 практически не сказывается на предельной растворимости шпинелида в силикатах шлака, а потери ванадия при получении шлака возрастают.

Скандий, дополнительно введенный в чугун, в количестве 0,0001 - 0,0015 мас. % способствует повышению износостойкости чугуна и полученной из него конструкционной стали. Образующиеся при окислении скандия в чугуне оксиды, соединяясь с окислами железа, образуют устойчивую шпинель Fe•Sc2•O3, входящую в состав комплексного шпинеля, что благоприятно влияет на формирование шлаков и переход ванадия в шлак.

Указанные пределы содержания основных компонентов чугуна позволяют снизить потери ванадия при извлечении ванадия из этого чугуна в товарный ванадиевый шлак при одновременном получении ванадиевого шлака требуемого химического состава.

Другие компоненты чугуна, взятые в том же соотношении, что и в известном сплаве, действуют в предложенном чугуне аналогично их действию в известном сплаве.

Предложенный передельный чугун при использовании его в качестве компонента шихты при выплавке конструкционных марок вследствие содержания германия и скандия значительно повышает износостойкость изделий (см. таблицу).

Пример. В промышленном 20 т конвертере при подаче воздуха через дно конвертера продували чугуны известного и предложенного состава. Во всех опытах условия поддерживали одинаковыми: температура чугуна 1280 - 11300oC, температура окончания перевода ванадия из чугуна в товарный ванадий, содержащий шлак, 1350 - 1365oC, охладитель - ванадийсодержащий агломерат в количестве 100 кг/т, интенсивность продувки 475 м3/мин. По окончании продувки (8 - 10 мин) в ковш выпускали полученный металл (углеродистый полупродукт), шлак кантовали в чашу после выпуска полупродукта. Далее определяли степень перехода ванадия из чугуна в шлак, а также извлечение по конвертерному переделу хрома и титана. Из данных, приведенных в таблице, следует, что предложенный чугун по сравнению с известным обеспечивает более высокую степень перехода ванадия из чугуна в товарный ванадий. Извлечение хрома и титана при конвертерном переделе также повышается.

Чугун нового состава получен в доменной печи при использовании заданного состава шихтовых материалов. Результаты доменной плавки показывают, что наблюдается снижение затрат железорудных материалов и топлива при выплавке чугуна нового состава.

Похожие патенты RU2116371C1

название год авторы номер документа
ЧУГУН 1994
  • Гаврилюк Г.Г.
  • Леконцев Ю.А.
  • Хисматулин Г.М.
  • Завидонский В.А.
RU2116372C1
ПЕРЕДЕЛЬНЫЙ ЧУГУН 1986
  • Губайдуллин И.Н.
  • Зеленов В.Н.
  • Гаврилюк Г.Г.
  • Леконцев Ю.А.
  • Щекалев Ю.С.
  • Кокаренко О.Н.
  • Рябов И.Т.
  • Сазухин А.И.
SU1389315A1
СПОСОБ И ШИХТА ДЛЯ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ КОНСТРУКЦИОННОЙ СТАЛИ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2012
  • Васин Евгений Александрович
  • Трофимов Сергей Александрович
RU2534715C2
ЧУГУН 1999
  • Филиппенков А.А.
  • Панфилова Л.М.
  • Смирнов Л.А.
RU2148103C1
КОМПЛЕКСНЫЙ ФЛЮС ДЛЯ ДЕВАНАДАЦИИ ЧУГУНА 1998
  • Кузовков А.Я.
  • Одиноков С.Ф.
  • Чернушевич А.В.
  • Ильин В.И.
  • Кокареко О.Н.
  • Дерябин Ю.А.
  • Батуев С.Б.
  • Зорихин В.В.
RU2148654C1
ФЛЮС ДЛЯ ДЕВАНАДАЦИИ ЧУГУНА 1986
  • Третьяков М.А.
  • Корогодский В.Г.
  • Литовский В.Я.
  • Дерябин Ю.А.
  • Щекалев Ю.С.
  • Винокуров В.Г.
  • Кокаренко О.Н.
  • Чернов А.В.
RU1412316C
СПОСОБ И ШИХТА ДЛЯ ПРОИЗВОДСТВА КОНСТРУКЦИОННОЙ СТАЛИ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ 2007
  • Карпов Анатолий Александрович
  • Филипьев Сергей Николаевич
  • Наумов Николай Викторович
  • Дьяконов Сергей Данилович
  • Васин Евгений Александрович
  • Щербаков Станислав Андреевич
RU2363736C2
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВЫХ ЧУГУНОВ В СТАЛЕПЛАВИЛЬНЫХ АГРЕГАТАХ 1997
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Ильин В.И.
  • Чернушевич А.В.
  • Данилин Ю.А.
  • Кабанов В.И.
  • Фетисов А.А.
  • Лукьяненко А.А.
  • Ляпцев В.С.
  • Атаманкин И.И.
RU2122587C1
ОСОБОТОНКОСТЕННАЯ ТРУБА ИЗ АУСТЕНИТНОЙ БОРОСОДЕРЖАЩЕЙ СТАЛИ ДЛЯ ОБОЛОЧКИ ТВЭЛА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Митрофанова Нина Михайловна
  • Леонтьева-Смирнова Мария Владимировна
  • Буданов Юрий Павлович
  • Целищев Андрей Васильевич
  • Цвелев Валентин Владимирович
  • Шкабура Игорь Алексеевич
  • Потоскаев Геннадий Григорьевич
  • Митрошенков Александр Викторович
  • Кабанов Илья Викторович
  • Воробьева Ирина Михайловна
  • Топилина Татьяна Александровна
RU2420600C1
АУСТЕНИТНАЯ СТАЛЬ 2003
  • Буданов Ю.П.
  • Целищев А.В.
  • Коростин О.С.
  • Потоскаев Г.Г.
  • Бибилашвили Ю.К.
  • Кошелев Ю.Н.
  • Решетников Ф.Г.
  • Бычков С.А.
RU2233906C1

Иллюстрации к изобретению RU 2 116 371 C1

Реферат патента 1998 года ЧУГУН

Изобретение относится к черной металлургии, а именно к составам чугуна, используемого в качестве товарного ванадиевого чугуна, а также для конверторного передела с получением ванадиевого шлака и углеродистого полупродукта. Предлагаемый чугун содержит углерод, кремний, марганец, ванадий, титан, медь, никель, кобальт, хром, алюминий, германий и железо и дополнительно фосфор, серу и скандий при следующем соотношении компонентов, мас.%: углерод 3,0 - 4,8; кремний 0,02 - 0,8; марганец 0,01 - 1,5; ванадий 0,03 - 1,0; титан 0,02 - 0,6; фосфор 0,015 - 0,10; сера 0,010 - 0,05; медь 0,01 - 0,12; никель 0,02 - 0,3; кобальт 0,001 - 0,14; хром 0,02 - 0,9; алюминий 0,01 - 0,15; германий 0,0001 - 0,002; скандий 0,0001 - 0,015; железо - остальное. Использование указанного передельного чугуна позволяет снизить затраты на железнорудную часть шихты и топливо на 5 - 10%, увеличить степень перехода ванадия в шлак на 0,9 - 1,5%, повысить степень извлечения хрома и титана на 1,3 - 2,2%, а также улучшить износостойкость конструкционных марок стали и чугуна. 1 табл.

Формула изобретения RU 2 116 371 C1

Чугун, содержащий углерод, кремний, марганец, ванадий, титан, медь, никель, кобальт, хром, алюминий, германий и железо, отличающийся тем, что он дополнительно содержит фосфор, серу и скандий при следующем соотношении компонентов, мас.%:
Углерод - 3,0 - 4,8
Кремний - 0,02 - 0,8
Марганец - 0,01 - 1,5
Ванадий - 0,03 - 1,0
Титан - 0,02 - 0,6
Фосфор - 0,015 - 0,10
Сера - 0,010 - 0,05
Медь - 0,01 - 0,12
Никель - 0,02 - 0,3
Кобальт - 0,001 - 0,14
Хром - 0,02 - 0,9
Алюминий - 0,01 - 0,15
Германий - 0,0001 - 0,002
Скандий - 0,0001 - 0,015
Железо - Остальноеб

Документы, цитированные в отчете о поиске Патент 1998 года RU2116371C1

Износостойкий чугун 1986
  • Янин Евгений Васильевич
  • Карпенко Михаил Иванович
  • Марукович Евгений Игнатьевич
  • Дудорова Мария Ивановна
SU1397531A1

RU 2 116 371 C1

Авторы

Гаврилюк Г.Г.

Леконцев Ю.А.

Хисматулин Г.М.

Завидонский В.А.

Даты

1998-07-27Публикация

1994-09-05Подача