УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АГРЕССИВНЫХ РАСПЛАВОВ Российский патент 1998 года по МПК G01K7/04 C21C5/30 

Описание патента на изобретение RU2117265C1

Изобретение относится к термометрии и может быть использовано для измерения температуры расплавов в металлургической отрасли, в частности в процессах жидкофазного восстановления, а также в химической промышленности в условиях высоких температур и наличия агрессивной жидкой среды.

Известны устройства, позволяющие измерять температуру металлургических расплавов, состоящие из термопреобразователей и защитных колпачков. Защитные колпачки выполнены из огнеупорной керамики или металла. Горячий спай термопреобразователя размещен в защитном колпачке, либо выведен непосредственно в среду, где измеряется температура (Рыжонков Д.И., Падерин С.Н., Серов Г.В. Твердые электролиты в металлургии. -М.: Металлургия, 1992, с. 75 - 78). Известны также устройства с высокотемпературными термопарами ПР 30/6, ВР 5/20, способные без возобновления рабочего спая с допустимой погрешностью обеспечивать многократные измерения температуры расплавов, достигающей значений 1500 - 1600oC, если они будут снабжены защитными наконечниками (Данишевский С.К., Сведе-Швец Н.И. Высокотемпературные термопары. -М.: Металлургия, 1977, с. 117 - 120).

Очевидно, что в условиях высоких температур и жидких агрессивных сред чрезвычайно трудно подобрать универсальный материал, способный противодействовать разрушающему действию данных факторов на термопреобразующий элемент.

С одной стороны, металлические материалы обладают значительной прочностью и термостойкостью, но вместе с тем характеризуются невысокой сопротивляемостью высокотемпературной окислительной либо восстановительной газовой атмосфере, присутствующей практически в любом пирометаллургическом агрегате.

В то же время, неметаллические материалы, в основном оксиды металлов и некоторые виды композиционных материалов на их основе, обладают приемлемой стойкостью к высокотемпературной газовой фазе, значительной изолирующей способностью (удельное электрическое сопротивление при высоких температурах составляет r = 105 - 107 Ом • м), но не сохраняют в сравнении с металлами химическую инертность по отношению к оксидному расплаву.

Из известных устройств наиболее близким по техническому решению к заявляемому является устройство, описанное в (авт.св. СССР N 1515069, кл. G 01 K 7/04, 1987 г). Данное устройство содержит термопару, рабочий спай которой размещен в керамическом наконечнике из алунда, либо диоксида циркония или дисилицида молибдена, соединенном с жаропрочной трубой, подключенной к сети (баллонам) с инертным газом - аргоном. В свою очередь, жаропрочная труба с термопарой и наконечником размещены в водоохлаждаемом кожухе и в случае необходимости перемещаются в нем. Данное устройство характеризуется простотой использования и легкостью в эксплуатации. Вместе с тем, анализ прототипа выявляет существенные недостатки, которые состоят в следующем:
замеры температуры осуществляются лишь периодически, при этом, в случае ошлакования жаропрочной трубы, не представляется возможным выдвинуть ее из зоны замера в зону действия охлаждения;
общая длительность работы устройства целиком и полностью определяется стойкостью керамического наконечника, испытывающего при функционировании значительный термический удар;
и наконец, устройство не позволяет производить замеры температуры в металлургических расплавах сколь-нибудь продолжительное время, вследствие растворения защитного колпачка в оксидном расплаве.

Целью настоящего изобретения является увеличение длительности работы устройства и осуществление непрерывного измерения температуры в течение продолжительного времени (времени проведения плавки).

Сформулированная цель достигается тем, что в отличие от известного устройства, содержащего термопару, рабочий спай который размещен в защитном керамическом наконечнике, расположенном в канале металлического блока, который установлен в водоохлаждаемом корпусе, металлический блок выполнен в виде соединенного с водоохлаждаемым корпусом цилиндра с глухим осевым продольным каналом, в котором размещен рабочий спай термопары с защитным керамическим наконечником, при этом часть цилиндра выполнена выступающей за пределы водоохлаждаемого корпуса, а на ее поверхности на расстоянии от наружного торца цилиндра, равном 0.3 - 0.4 ее длины, выполнена проточка, диаметр которой равен 2.0 - 2.5 диаметра продольного канала цилиндра, ширина проточки равна 0.2 - 0.4 длины выступающей за пределы водоохлаждаемого корпуса части цилиндра.

На чертеже изображен общий вид устройства в разрезе.

Устройство для измерения температуры агрессивных расплавов содержит водоохлаждаемый корпус 1, термопреобразователь 2 в защитном керамическом наконечнике 3, металлический блок 4.

Корпус выполнен из трубы нержавеющей стали, например, X18H92T, внутри нее располагается трубка для подачи охлаждающей воды 5 и сливной патрубок 6. Во внутренней центральной части корпуса размещена трубка 7 таким образом, что небольшая часть ее (2 - 3 мм) выступает из торцевой части корпуса, а противоположная часть трубки подключена к системе с инертным газом. Выступающие части трубок обвариваются. Трубка 7 соединена разъемным, например резьбовым соединением с металлическим блоком 4, выполненным в виде круглого цилиндра с проточкой между его торцами из тугоплавкого жаропрочного металла, инертного по отношению к агрессивной среде, например молибдена. Внутри металлического блока имеется глухой продольный осевой канал 8, в котором размещены термопреобразователь 2 марки ПР 6/ 30 в защитном керамическом наконечнике 3 из плавленной трехокиси алюминия. Термопара через удлинительные провода 9, изолированные от сквозной трубки керамическими бусами 10, соединена с измерительным прибором (вольтметром).

Выбор конструктивного решения заявляемого устройства основан на сочетании преимуществ служебных характеристик керамики и металла, находящихся в различных агрессивных средах, а именно в оксидном расплаве и газовой атмосфере.

Устройство работает следующим образом. Металлический блок воспринимает тепловую энергию среды и передает ее на термопреобразователь, электрический потенциал которого фиксируют прибором.

Твердые и жаропрочные металлы, в данном случае молибден, проявляет повышенную стойкость в высокотемпературной агрессивной среде, которой является оксидный расплав, в частности процесса жидкофазного восстановления РОМЕЛТ, содержащий шлакообразующие компоненты CaO, SiO2, MgO, Al2O3, MnO и незначительные концентрации закиси железа FeO, лежащий в интервале 1.5 - 2.5% по массе. Находясь в среде, температура которой измеряется, молибденовый блок не имеет прямого контакта с газовой фазой, содержащей кислород. Химическое взаимодействие металла с кислородом в условиях высоких температур приводит к быстрому окислению молибдена. В то же время внутренняя поверхность продольного осевого канала металлического блока и торцевая часть его, находящаяся в трубке, также подвержена воздействию окислительной газовой атмосферы. Для предотвращения этого воздействия в трубку 7 подают инертный газ. Причем во время работы устройства охлаждения горячего спая термопары инертным газом не наблюдается. Керамический наконечник в данной конструкции выполняет функции электрического изолятора горячего спая термопары от стенок металлического блока и предотвращает возможную диффузию атомов молибдена в материал термопреобразователя. Кроме того, керамический наконечник не испытывает значительного термического удара, роль демпфера в этом случае играет металлический блок.

Таким образом, в результате работы заявляемого устройства длительность его функционирования определяется в основном стабильностью показаний термопреобразователя.

Однако при работе устройства протекает процесс отвода тепла от металлического блока к водоохлаждаемому корпуса, что приводит в конечном итоге к заниженным значениям измеряемой температуры по отношению к истинной температуре среды. Поэтому для уменьшения этого потока на цилиндрической поверхности металлического блока выполнена проточка. Она характеризуется диаметром d, шириной l и расположением, определяемым расстоянием S от кромки проточки до торца металлического блока, в котором размещен горячий спай термопары. Диаметр проточки связан с величиной диаметра канала в металлическом блоке d, в котором размещен термопреобразователь с защитным наконечником. Диаметр канала в устройстве является постоянной величиной, равной 6 мм. Эта связь обусловлена тем, что, с одной стороны, диаметр проточки должен быть как можно меньший (Dпроточки ---> dканала), но в этом случае создается угроза деформации этого участка и отрыв его под действием силы тяжести и высокой температуры от устройства. Экспериментально установлено, что стабильная работа устройства наблюдается при выполнении определенного соотношения между диаметром проточки и диаметром канала, выражаемого равенством D = (2.0 - 2.5) • d, мм.

В то же время выбор ширины и расположения проточки на металлическом блоке основан на следующих соображениях. Проточка не должна быть узкой, поскольку в данном случае будет затруднен теплообмен между всей средой, в которой измеряется температура и объемом расплава, находящимся в проточке. Температура этого объема будет существенно меньшей по сравнению с остальной частью среды и через него облегчен отвод тепла от рабочего спая термопары к водоохлаждаемому корпусу. Иными словами, среда, сосредоточенная в узкой проточке не будет энергично взаимодействовать с остальной частью среды, температура которой измеряется. Вместе с тем, проточка не должна располагаться близко к месту соединения металлического блока с водоохлаждаемым корпусом, так как при этом уменьшается стойкость металлического блока к действующему на него изгибающему моменту. С другой стороны, проточка должна быть удалена и от горячего спая термопреобразователя. Тогда поверхность контакт между расплавом и той частью металлического блока, в котором размещен рабочий спай термопары, будет большим и, следовательно, уровень измеряемой температуры будут максимально приближен к истинной температуре среды. Промышленные испытания показали, что оптимальная ширина проточки связана с величиной выставляемой из водоохлаждаемого корпуса части металлического блока L соотношением: l = (0.2 - 0.4) • L, мм, а расположение проточки на металлическом блоке характеризуется расстоянием от ее края до торца металлического блока, погружаемого в среду, температура которой измеряется и определяется равенством: S = (0.3 - 0.4) • L, мм, где L величина постоянная, равная ≈ 120 мм.

В табл. 1 приведены некоторые характеристики работы устройства, зависящие от значения D.

Основные показатели работы заявляемого устройства в сравнении с прототипом и аналогами приведены в табл. 2.

Похожие патенты RU2117265C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГАЗОВЫХ ПОТОКОВ 2012
  • Смыслов Владимир Иванович
  • Суровикин Сергей Алексеевич
  • Демин Андрей Николаевич
  • Чайка Юрий Анатольевич
  • Карташов Анатолий Сергеевич
RU2522838C1
Устройство для измерения температуры поверхности газохода 2019
  • Проказин Федор Евгеньевич
  • Смыслов Владимир Иванович
  • Демин Андрей Николаевич
RU2700727C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГАЗОВЫХ ПОТОКОВ 2016
  • Суровикин Сергей Алексеевич
  • Проказин Федор Евгеньевич
  • Демин Андрей Николаевич
RU2619360C1
Высокотемпературный герметичный термопреобразователь 2017
  • Суровикин Сергей Алексеевич
  • Демин Андрей Николаевич
RU2666193C1
СПОСОБ УДАЛЕНИЯ КОРУНДОВЫХ И КВАРЦЕСОДЕРЖАЩИХ КЕРАМИЧЕСКИХ СТЕРЖНЕЙ ИЗ ВНУТРЕННИХ ПОЛОСТЕЙ ОТЛИВОК 1998
RU2158655C2
Многозонный термопреобразователь 2017
  • Мульцин Владимир Алексеевич
  • Кортунов Виктор Александрович
  • Чугин Павел Станиславович
RU2655734C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЩЕЛОЧНОГО РЕАГЕНТА ДЛЯ РЕГЕНЕРАЦИИ СМАЗОЧНОГО МАСЛА 1994
  • Картошкин А.П.
  • Ашкинази Л.А.
  • Филимонов В.А.
  • Браславский М.И.
RU2140463C1
Способ измерения температуры агрессивной среды 1987
  • Роменец Владимир Андреевич
  • Валавин Валерий Сергеевич
  • Усачев Александр Борисович
  • Подгородецкий Геннадий Станиславович
  • Ролдугин Георгий Никитович
  • Щеглов Николай Васильевич
  • Дерновский Адольф Васильевич
  • Чумарин Борис Анатольевич
SU1515069A1
ШАРОВОЙ КРАН 1996
  • Фортунатов Р.П.
  • Галаганов В.Н.
  • Рязанов А.А.
RU2086843C1
ПАССИВИРУЮЩИЙ РАСТВОР ДЛЯ ОБРАБОТКИ СОСУДОВ И АППАРАТОВ, КОНТАКТИРУЮЩИХ С ПЕРЕКИСЬЮ ВОДОРОДА 1993
RU2102531C1

Иллюстрации к изобретению RU 2 117 265 C1

Реферат патента 1998 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АГРЕССИВНЫХ РАСПЛАВОВ

Изобретение относится к термометрии и может быть использовано в металлургии в процессах высокотемпературного жидкофазного восстановления металлов из оксидных композиций. Изобретение позволяет увеличить длительность работы устройства и осуществить непрерывное измерение температуры в течение времени проведения плавки, Устройство для измерения температуры агрессивных расплавов содержит термопару, рабочий спай которой размещен в защитном наконечнике, расположенном в канале металлического блока (МБ). МБ выполнен в виде соединенного с водоохлаждаемым корпусом цилиндра с глухим продольным осевым каналом, в котором размещен рабочий спай термопары с защитным керамическим наконечником. Часть цилиндра выполнена выступающей за пределы корпуса. На ее поверхности на расстоянии 0,3 - 0,4 ее длины от наружного торца цилиндра выполнена проточка. Конструкция устройства позволяет уменьшить теплоотвод от рабочего спая термопары к водоохлаждаемому корпусу, повысить механическую жесткость металлического блока, находящегося под воздействием высокой температуры и силы тяжести. Устройство дает возможность непосредственно измерять температуру среды путем контакта металлического блока с ней и предохранять металлический блок от воздействия окислительной либо восстановительной высокотемпературной газовой атмосферы. При работе устройства керамический наконечник термопары не испытывает значительного термического удара при контакте со средой, температуру которой измеряют. Диаметр и ширина проточки являются строго определенными величинами. 1 з.п. ф-лы, 1 ил., 2 табл.

Формула изобретения RU 2 117 265 C1

1. Устройство для измерения температуры агрессивных расплавов, содержащее термопару, рабочий спай который размещен в защитном керамическом наконечнике, расположенном в канале металлического блока, который установлен в водоохлаждаемом корпусе, отличающееся тем, что металлический блок выполнен в виде соединенного с водоохлаждаемым корпусом цилиндра с глухим осевым продольным каналом, в котором размещен рабочий спай термопары с защитным керамическим наконечником, при этом часть цилиндра выполнена выступающей за пределы водоохлаждаемого корпуса, а на ее поверхности на расстоянии от наружного торца цилиндра, равном 0,3 - 0,4 ее длины, выполнена проточка, диаметр которой равен 2,0 - 2,5 диаметра продольного канала цилиндра, ширина проточки равна 0,2 - 0,4 длины выступающей за пределы водоохлаждаемого корпуса части цилиндра. 2. Устройство по п.1, отличающееся тем, что металлический блок выполнен из молибдена.

Документы, цитированные в отчете о поиске Патент 1998 года RU2117265C1

SU, 1515069 А1, 15.10.89
SU, 115690 А1, 30.10.58
SU, 1244191 А1, 15.07.86
US, 4646578 А, 03.03.87
US, 4721534 А, 26.01.88
DE, 3716145 А, 24.11.88
WO, 98/11637 А1,30.11.89
EP, 0108431 А2, 16.05.84
Данишевский С.К., Сведе-Швец Н.И
Высокотемпературные термопары
М.: Металлургия, 1977, с.117-120
Рыжонков Д.И., Падерин С.Н., Серов Г.В
Твердые электролиты в металлургии
М.: Металлургия, 1992, с
Фальцовая черепица 0
  • Белавенец М.И.
SU75A1

RU 2 117 265 C1

Авторы

Усачев А.Б.

Вильданов С.К.

Баласанов А.В.

Даты

1998-08-10Публикация

1997-03-25Подача