Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике.
Известны устройства с высокотемпературными термопарами, способными без возобновления рабочего термоспая обеспечивать с допустимой погрешностью многократные измерения температуры среды до 1500-1600°С, которая обладает высоким механическим воздействием на термопару, если они будут снабжены защитными наконечниками (Данишевский Д.С., Сведе-Швец Н.И. Высокотемпературные термопары, М., Металлургия, 1977, с. 117-120).
Однако известные устройства, хотя и обеспечивают защиту термопары от механических воздействий среды за счет введения защитных наконечников, но обладают невысоким быстродействием, т.к. введение защитных наконечников приводит к снижению теплообмена между термопарой и средой, температура которой подлежит измерению.
Из известных устройств наиболее близким по технической сущности к заявляемому является устройство, описанное в патенте РФ №2117265, МКИ G01K 7/04, 1998 г.
Данное устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с глухим продольным осевым каналом, в котором размещен рабочий спай термопары с защитным керамическим наконечником. Часть цилиндра выполнена выступающей за пределы корпуса. На его поверхности, на расстоянии 0,3-0,4 ее длины от наружного торца цилиндра, выполнена проточка. Конструкция устройства позволяет уменьшить теплоотвод от рабочего спая термопары к водоохлаждаемому корпусу, повысить механическую жесткость металлического блока, находящегося под воздействием высокой температуры и силы тяжести.
Однако анализ прототипа выявляет существенный недостаток, который заключается в низком быстродействии, что обусловлено наличием керамического наконечника с низким коэффициентом теплопередачи от среды к термопаре, массивностью конструкции самой термопары и, соответственно, повышенной теплоемкостью и тепловой инерцией.
Ожидаемым техническим результатом настоящего изобретения является повышение быстродействия устройства для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике.
Сформулированный результат достигается тем, что в устройстве для измерения температуры газовых потоков, представляющем собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай, термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары, при этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно.
На фиг. 1 изображен общий вид устройства в разрезе.
Устройство для измерения температуры газовых потоков содержит металлический корпус 1 термопары, термопару 2, включающую металлическую трубку 3, керамическую вставку 4 из специальной керамики с четырьмя каналами для термопарных проводов 5, рабочий спай 6. Устройство для измерения температуры газовых потоков устанавливается в канале для измерения температуры 7 и закрепляется накидной гайкой 8.
Устройство работает следующим образом.
Устройство устанавливается в канале-газоходе 7 с помощью накидной гайки 8 так, что две точки выхода термопарных проводов 5 из керамической вставки 4 и сами указанные термопарные провода ориентированы продольно по отношению к направлению набегающего газового потока. На расстоянии 2/3 длины термопарных проводов 5 и до конца их длины предварительно скрученные четыре термопарных провода 5 свариваются лазерной сваркой с глубиной проварки на половину диаметра термопарного провода. Точки выхода термопарных проводов 5 из керамической вставки 4 расположены максимально близко к месту сопряжения вставки 4 с металлической трубкой 2 термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами 5 и металлической трубкой 3 термопары 2.
Такое соединение рабочего спая 6 с помощью предварительной скрутки и лазерной сварки на глубину половины диаметра термопарного провода обеспечивает повышенную механическую прочность соединения проводов и надежный электрический контакт при минимальной массе. Так, например, для сплавов из вольфрам-рения (5%) и вольфрам-рения (20%) высокотемпературных термопарных проводов, составляющих высокотемпературную термопару типа ВР5/20, указанное исполнение термоспая позволяет устранить влияние хрупкости проводов и повысить механическую прочность термоспая в целом при минимальной массе термоспая.
Кроме того, конструкция рабочего спая 6 в виде жесткого треугольника из двух термопарных проводов 5, точки вывода которых из вставки 4 ориентированы по отношению к набегающему газовому потоку продольно и расположены на максимально возможном расстоянии друг к другу во вставке 4, обеспечивают максимально жесткую и прочную конструкцию соединения проводов по отношению к динамическому напору набегающего газового потока при минимальной массе рабочего спая. Расположение двух из четырех проводников продольно по отношению к набегающему газовому потоку (когда один из них находится в зоне аэродинамической тени другого) приводит к уменьшению механической нагрузки на рабочий спай, что также приводит к повышению надежности функционирования термопары.
Соединение в рабочем спае 6 четырех термопарных проводов 5 позволяет выполнить две термопары и таким образом осуществить резервирование (двоирование) числа термопар, применяемых в устройстве. При этом часто встречающимся вариантом выполнения сдвоенной термопары является, когда попарное соединение двух термопарных проводов из вольфрам-рения (5%) и вольфрам-рения (20%) осуществляется путем их скрутки на участке посередине их двух отрезков с последующей лазерной сваркой в рабочий спай места скрутки и протяжкой концов проводов через отверстия керамического изолятора 4.
Таким образом, предлагаемое механически и электрически надежное и прочное исполнение термопары обеспечивает минимально возможную массу термопары и, соответственно, минимальную теплоемкость и термическую инерцию, что позволяет достичь максимально возможное быстродействие при сохранении механической и электрической надежности в условиях воздействия скоростного динамического высокотемпературного газового напора.
Проведенные испытания показали повышенные характеристики быстродействия при сохранении механической и электрической надежности в условиях воздействия скоростного динамического высокотемпературного газового напора.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для измерения температуры поверхности газохода | 2019 |
|
RU2700727C1 |
Устройство для измерения температуры газовых потоков | 2021 |
|
RU2777743C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГАЗОВЫХ ПОТОКОВ | 2012 |
|
RU2522838C1 |
Высокотемпературный герметичный термопреобразователь | 2017 |
|
RU2666193C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГОРЯЧЕГО СПАЯ ТЕРМОПАРЫ ИЗ ТУГОПЛАВКИХ МЕТАЛЛОВ | 2009 |
|
RU2399893C1 |
Устройство для сваривания встык тонких термопарных проводов | 2017 |
|
RU2674554C1 |
ТЕПЛОПРИЕМНИК | 2023 |
|
RU2808218C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ КЕРАМИЧЕСКИХ ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕРМОМЕТРИИ ИЗ НИТРИДОВ ЭЛЕМЕНТОВ ПОДГРУПП ТИТАНА И ВАНАДИЯ МЕТОДОМ ОКИСЛИТЕЛЬНОГО КОНСТРУИРОВАНИЯ | 2021 |
|
RU2759827C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АГРЕССИВНЫХ РАСПЛАВОВ | 1997 |
|
RU2117265C1 |
ДАТЧИК ТЕМПЕРАТУРЫ | 2012 |
|
RU2494357C1 |
Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай. Термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары. При этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно. Технический результат - повышение быстродействия устройства при сохранении его механической прочности и устойчивости к газодинамическим нагрузкам от газового потока. 1 ил.
Устройство для измерения температуры высокотемпературных газовых потоков, представляющее собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай, отличающееся тем, что термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары, при этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АГРЕССИВНЫХ РАСПЛАВОВ | 1997 |
|
RU2117265C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГАЗОВЫХ ПОТОКОВ | 2012 |
|
RU2522838C1 |
АВТОМАТИЧЕСКИЙ ПОПЛАВКОВЫЙ РЕГУЛЯТОР ВЫСОТЫ ПОДЪЕМА В ТРЕНИРОВОЧНЫХ БАРОКАМЕРАХ | 1950 |
|
SU90555A1 |
Покрытие для деревянных моделей | 1961 |
|
SU148492A1 |
JPH 886694 A, 02.04.1996. |
Авторы
Даты
2017-05-15—Публикация
2016-04-20—Подача