Изобретение относится к технической диагностике двигателей внутреннего сгорания и может быть использовано при определении качества масла, работающего в двигателе внутреннего сгорания (ДВС).
Основными параметрами качества моторного масла являются щелочное число и содержание нерастворимых в бензине (НРБ) механических примесей. Известно, что плотность работавших масел связана с их загрязненностью. Выявлена зависимость, по которой степень загрязненности работавшего масла может определяться экспресс-методом путем замера плотности свежих и работавших масел [1] .
Недостатком данного способа является невозможность одновременного определения загрязненности и щелочного числа масла. Известно, что степень загрязненности работавшего масла является информативным источником степени старения моторного масла, определяемого по щелочному числу путем выделения систематической составляющей примесей масла с помощью центрифуги ЦЛС-З, рекомендуемой для определения содержания механических примесей в масле по ГОСТ 20684-75 [2] . Недостатком данного метода является большая трудоемкость и длительность определения.
Задача изобретения - повышение точности и информативности экспресс-метода определения качества моторного масла.
Сущность изобретения заключается в том, что определяют отношение разности плотностей работавшего и свежего масел к плотности свежего масла (Δρм/ρ0) и о качестве масла судят по заданной зависимости между этим отношением и щелочным числом.
Для доказательства предлагаемого способа определения качества работавшего моторного масла рассмотрим упрощенную кинематическую модель старения масла. В данной упрощенной кинематической модели механизм старения моторного масла рассматривается следующим образом.
В процессе работы ДВС за счет абразивного износа трущихся металлических частей и поступающих извне частиц пыли в масле скапливаются нерастворимые твердые загрязнения, которые взаимодействуют с присадками (щелочью), присутствующими в маслах. Кроме того, в износе деталей двигателя, главным образом кривошипно-шатунного механизма, принимают участие и продукты коксообразования.
Продукты взаимодействия (твердые загрязнения + щелочь) могут участвовать в процессе абразивного износа или же удаляться в системе очистки масла фильтрами.
В результате этого щелочность масла будет снижаться, а количество твердых загрязнений, не связанных с щелочными добавками, будет увеличиваться, и, следовательно, абразивный износ будет ускоряться.
Обозначим:
- концентрация твердых загрязнений в масле, д.е.;
- концентрация твердых загрязнений в масле, связанных с присадками (щелочью), д.е.;
n1 - содержание присадки в свежем масле, д.е.:
n2 - содержание присадки в работавшем масле, д.е.:
nг - концентрация металлических частиц загрязнений, связанных с присадками, д.е.
D - скорость поступления в масло твердых нерастворимых в масле загрязнений, м/с;
β - коэффициент взаимодействия присадки с загрязнениями;
A; B - коэффициенты, зависящие от свойства загрязнений и характер взаимодействия с трущимися деталями;
α,γ - доли загрязнений и присадок в нейтрализованных соединениях.
В данных обозначениях кинетика процесса старения масла может быть описана следующими уравнениями:
Подставляя третье и четвертое уравнения в первое и второе и введя обозначения
будем иметь
Разделив первое уравнение системы (3) на второе, получим уравнение, связывающее концентрации частиц, свободных (не связанных) загрязнений и продуктов взаимодействия (присадок):
Данное уравнение нелинейное и аналитически не может быть решено. Его можно решить численно, но при этом необходимо знать все константы задачи (A; B; β;α;γ; D), которые определить очень сложно. Из (1) можно получить уравнения (полагая n1 = z)
связывающие концентрации частиц свободных загрязнений металла с присадками (щелочью). Уравнение (5) также необходимо решать численно. Аналитически решение можно получить, если сделать некоторые упрощающие допущения.
Так, например,
B = 0; α = 0; (6)
Это означает, что фильтр полностью очищает масло от примесей, способствующих износу (B = 0); и доля загрязнений в продуктах взаимодействия загрязнения и присадки (щелочи) пренебрежительно мала (α~0) . В этом случае из уравнения (4) получаем следующее уравнение
Откуда получаем
или
Далее будем считать, что физически оправдано
Тогда, разлагая логарифмы в ряд и ограничиваясь первыми двумя членами разложения, получим формулу:
Если под y понимать количество нерастворимых в бензине примесей, тогда на основе экспериментальной зависимости, приведенной в [2], можно сделать оценку комплекса параметров, входящих в формулу (11). Так, имеем,
Используя полученные формулы, выведем зависимость изменения плотности моторного работавшего масла от щелочного числа. Тогда можно считать, что
где
ρмет - плотность твердых загрязнений, не связанных с присадками;
ρг - плотность металлических частиц загрязнений, связанных с присадками;
ρo,ρoм - плотность свежего и отработанного масел, соответственно.
Подставив в (11) полученные выражения для y из уравнения (1) их из уравнения (1 и 2), будем иметь
Обозначив
и полагая γ ≈ 100 , окончательно получим формулу зависимости изменения плотности моторного масла от щелочного числа
Из уравнения (16) следует, что Δρ и ΔC связаны линейной зависимостью. В то же время обработка экспериментальных данных в координатах Δρ/ρ0ΔC/C0 показывает хорошее совпадение в области значений 0≤ΔC/C0≤ 0,65 с уравнением прямой, в которой свободный член равен 0. Учитывая это, окончательно получим
На практике использование этой формулы неудобно, и требуется длительное время для подсчета. Поэтому, используя предварительно полученные экспериментальные данные, строим кривую зависимости Δρ/ρ0 от ΔC/C0 (см. чертеж).
Проверку осуществляют следующим образом. Из двигателя отбирают пробу масла не менее 500 мл, определяют его плотность в соответствии с требованиями ГОСТ 3900-82 и приводят ее к температуре 20oC. По паспорту на свежее (кондиционное) масло, которое было в двигателе, находят "заводскую" плотность. При этом по двум данным находят разность плотностей свежего масла (ρ0) и работающего масла (ρОМ) , которое, например, равно Δρ. Затем определяют отношение Δρ/ρ0 . Далее по значению отношений плотностей по графической зависимости находят отношение щелочного числа работающего масла (на момент отбора пробы) к щелочному числу свежего масла. Зная щелочное число свежего масла, определяют щелочное число моторного масла, отобранного из двигателя.
Пример. Собирают пробу масла М10Г2К из картера модели 740 в количестве 500 см3 и определяют плотность в соответствии с требованиями ГОСТ 3900-82. (Паспортные данные на свежее моторное масло: плотность при 20oC - 0,902 г/см3; щелочное число 6,0 мг КОН/г). Затем, получив плотность работающего моторного масла и зная плотность свежего моторного масла, вначале определяют разность плотностей свежего и работающего масла (Δρ), которая будет равна 0,0055 г/см3, а затем отношение разности плотностей свежего и работающего масел к свежему маслу.
Далее находят эту точку на графике, опускают от этой точки прямую до пересечения графической кривой линии и затем из точки пересечения опускают перпендикуляр и находят точку отношения разности щелочных чисел свежего и работавшего масел к свежему маслу (ΔC/C0) и вычисляют щелочное число работающего масла в двигателе, которое будет равно 1,5 мг КОН/г. Поскольку это значение меньше допускаемого (Cдоп = 2,2 мг КОН/г для периодичности проверки качества масла после наработки, равной 240 ч), данное масло непригодно к дальнейшей эксплуатации.
Таким образом, предлагаемый способ может быть реализован с помощью нефтеденсиметра и цилиндра для измерения плотности, последний может быть и металлический и не требует по сравнению с другими методами дорогостоящего лабораторного оборудования, такого как аналитические весы, центрифуга и др.
Использование предлагаемого способа определения качества моторного масла обеспечивает повышение периодичности, что важно для диагностирования двигателя и, как следствие, предотвращение преждевременной или поздней смены масла. Предлагаемый способ хорошо коррелирует со способом проверки качества, определяемого с помощью центрифуги, коэффициент корреляции составляет 0,91.
Способ не трудоемок и прост по реализации и позволяет осуществлять проверку качества моторного масла в различных условиях эксплуатации двигателя.
Таким образом, способ определения качества моторного масла позволяет повысить точность и информативность экспресс-метода определения качества моторного масла. Такое техническое решение в литературе не описано, что позволяет признать заявляемый способ соответствующим критерию "существенные отличия".
Практическая возможность реализации способа при диагностике ДВС и определении качества моторного масла отвечает критерию "промышленная применимость".
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ МАСЕЛ | 1995 |
|
RU2106398C1 |
СПОСОБ УТИЛИЗАЦИИ ОТРАБОТАННОГО МОТОРНОГО МАСЛА | 1995 |
|
RU2079549C1 |
НЕФТЯНОЙ ПРОПИТОЧНЫЙ СОСТАВ ДЛЯ ДРЕВЕСИНЫ | 2001 |
|
RU2206446C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА УГЛЕВОДОРОДНОГО СЫРЬЯ В РЕЗЕРВУАРАХ | 1996 |
|
RU2116629C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАСЕЛ | 2002 |
|
RU2222012C1 |
СМАЗКА ДЛЯ ШАРОШЕЧНЫХ ДОЛОТ С ГЕРМЕТИЗИРОВАННЫМИ ОПОРАМИ | 2000 |
|
RU2183660C2 |
Способ повышения эффективности использования работающих моторных масел | 2021 |
|
RU2778760C1 |
СПОСОБ СТАБИЛИЗАЦИИ СВОЙСТВ МАСЛА В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ | 1992 |
|
RU2051277C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДИСПЕРГИРУЮЩЕ-СТАБИЛИЗИРУЮЩИХ СВОЙСТВ СМАЗОЧНЫХ МАСЕЛ | 2005 |
|
RU2269776C1 |
СПОСОБ ОЧИСТКИ ПОВЕРХНОСТИ ВОДЫ И ПОЧВЫ ОТ ЗАГРЯЗНЕНИЙ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ | 1995 |
|
RU2091539C1 |
Способ определения качества моторного масла относится к технической диагностике двигателей внутреннего сгорания (ДВС) и может быть использован при определении качества масла, работающего в ДВС. Способ заключается в том, что определяют отношение разности плотностей работающего и свежего масла к плотности свежего масла (Δρм/ρ0) и о качестве масла судят по заданной зависимости между этим отношением и щелочным числом. Способ повышает точность определения качества масла. 1 ил.
Способ определения качества моторного масла, включающий отбор пробы масла заданного количества из картера двигателя, определение плотности при 20oC с последующим определением щелочного числа, отличающийся тем, что определяют отношение разности плотностей работавшего и свежего масла к плотности свежего масла и о качестве масла судят по заданной зависимости между этим отношением и щелочным числом.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство, 1282002, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Рельсовый тормоз | 1929 |
|
SU20684A1 |
Масла моторные отработанные | |||
Методы определения нерастворимых осадков. |
Авторы
Даты
1998-08-10—Публикация
1996-07-08—Подача