Изобретение относится к аналитическому приборостроению, а именно к конструкциям малогабаритных датчиков для измерения концентрации горючих газов в окружающей среде.
Известны термохимические газоанализаторы [1. Каталог. ВНИИ информации и экономики Минприбора СССР. Приборы и средства автоматизации. Часть 1.3. Приборы для определения состава и свойств газов, жидкостей, твердых и сыпучих веществ. М. 1987 г., с.9 - 10; 2. А.С. СССР N 1767405, кл. G 01 N 27/16. Термохимический датчик, 07.10.92, Бюл. N 37; 3. Г.К.Борисов. Катализ. Вопросы теории и практики. Новосибирск: Наука. Сибирское отделение. 1987, с. 158] , содержащие две идентичные платиновые спирали, каждая из которых заключена в пористом носителе, один из которых покрыт катализатором (рабочий чувствительный элемент), а другой не покрыт (сравнительный чувствительный элемент). Оба чувствительных элемента включены в мостовую схему, при этом с использованием сравнительного чувствительного элемента осуществляется компенсация изменений температуры окружающей среды.
Наиболее близкой к заявляемой является конструкция термохимического газоанализатора [Справочник. Методы и приборы для определения водорода (газовый анализ). А.А.Аманназаров и др. 1985, с. 68], содержащая чувствительный элемент в виде спирали, соединенной с проволочными выводами и заключенной внутри пористого носителя, обработанного катализатором, и установленной в держателе.
Держатель установлен в более чувствительных элементах, в которых помимо рабочего чувствительного элемента, обработанного катализатором, расположен сравнительный (компенсационный) чувствительный элемент, не обработанный катализатором.
Через рабочий и сравнительный чувствительные элементы пропускаются измерительный ток для выделения полезного сигнала в присутствии регистрируемого газа.
Недостатком конструкции являются сложность аппаратурной реализации и ограниченная надежность ввиду применения двух чувствительных элементов - рабочего и сравнительного, функционирующих при повышенных значениях измерительного тока, служащего также для нагрева обоих чувствительных элементов до высоких рабочих температур (до 400oС). В результате при типичных для термохимических газоанализаторов значений измерительного тока в десятки и сотни mA плотность тока в спиралях чувствительных элементов и проволочных выводах может превышать допустимые значения.
Техническим результатом изобретения является упрощение аппаратурной реализации и повышение надежности устройства.
Результат достигается тем, что в термохимическом газоанализаторе, содержащем чувствительный элемент в виде спирали, соединенной с проволочными выводами и заключенной внутри пористого носителя, обработанного катализатором, и установленной в держателе, в качестве держателя используется диэлектрическая подложка с отверстием и контактными площадками, к которым прикреплены проволочные выводы чувствительных элементов, а чувствительные элементы располагаются над отверстием, причем на участке диэлектрической подложки между отверстиями и ее боковыми кромками выполнен пленочный нагреватель по меньшей мере с двумя пленочными контактами.
Конструкция датчика представлена на чертеже.
Устройство содержит чувствительный элемент 1 в виде спирали, соединенной с проволочными выводами 2 и 3, прикрепленными к пленочным контактам 4, 5, выполненным на держателе - диэлектрической подложке 6. Чувствительный элемент 1 располагается над отверстием 7, центр которого совпадает с центром диэлектрической подложки 6.
На поверхности подложки 6 вдоль ее кромок 8 выполнен пленочный нагреватель в форме круглой петли 9 с пленочными контактами 10. На пленочном нагревателе 9 выполнен защитный диэлектрический слой (на фиг. не показан).
Диэлектрическая подложка 6 устанавливается на промежуточную прокладку 11, в которой выполнено сквозное отверстие диаметром D0 и с центром, совпадающим с центром подложки, причем D0 ≥ dп (dп - диаметр отверстия в подложке 6).
Пленочный нагреватель может также выполняться в форме незамкнутой рамки. В этом случае контактные площадки 4 и 5 могут быть выполнены во внутренней области нагревателя вблизи внутренних кромок противолежащих по диагонали углов.
Датчик работает следующим образом.
Нагреватель, подключенный к блоку термостабилизации (на фиг. не показан), формирует заданную температуру Tп подложки.
Значение Tп выбирается из условия Tп ≥ Tmax (Tmax - максимальная температура окружающей среды). При фиксированном значении Tп рабочая температура Tр чувствительного элемента достигается за счет протекания через него измерительного тока Iи, величина которого однозначно определяется параметрами конструкции и сопротивлением нагревателя.
В отсутствие горючего газа температура чувствительного элемента равна Tр, а падение напряжения U0 на нем определяется выражением
Uo= Iи•Ro[1+β(Tp-To)],
(β - температурный коэффициент сопротивления спирали чувствительного элемента).
При наличии регистрируемого газа в окружающем воздухе на чувствительном элементе происходит каталитическая реакция с выделением тепла, в результате чего его температура повышается. Приращение температуры ΔT, пропорциональное концентрации регистрируемого горючего газа, приводит к изменению сопротивления чувствительного элемента на величину ΔR, что соответственно приведет к изменению падения напряжения на нем на величину ΔU = Iи•ΔR.
Изменение напряжения на чувствительном элементе в зависимости от концентрации регистрируемого газа фиксируется схемой обработки сигнала (на фиг. не показана).
Ввиду независимости измерительного тока Iи от температуры Tо окружающей среды упрощается аппаратурная реализация за счет упрощения электрической схемы обработки сигнала и исключается необходимость применения компенсационного чувствительного элемента.
В заявляемой конструкции необходимая рабочая температура чувствительного элемента формируется при меньших значениях Iи (за счет нагрева подложки пленочным нагревателем), что повышает надежность устройства.
Надежность устройства повышается также за счет применения промежуточной диэлектрической прокладки с отверстием, что повышает тепловое сопротивление нагревателя и снижает потребляемую им мощность. Кроме того, надежность устройства повышается за счет использования только одного - рабочего чувствительного элемента.
В заявляемой конструкции достигается высокая равномерность температуры в объеме отверстия диэлектрической подложки (держателя) благодаря исключению теплопередачи за счет теплопроводимости в направлении к центру подложки, что позволяет обеспечить необходимую точность измерений.
название | год | авторы | номер документа |
---|---|---|---|
ДАТЧИК ГАЗОАНАЛИЗАТОРА | 1992 |
|
RU2030738C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ДАТЧИКА ГАЗОВ | 1994 |
|
RU2065602C1 |
ДАТЧИК СОСТАВА ГАЗА | 1994 |
|
RU2100800C1 |
РЕЗИСТИВНЫЙ ГАЗОВЫЙ ДАТЧИК | 1992 |
|
RU2038589C1 |
ТЕРМОХИМИЧЕСКИЙ ДАТЧИК | 2011 |
|
RU2483297C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНЫХ РЕЗИСТОРОВ | 1996 |
|
RU2109360C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНЫХ РЕЗИСТОРОВ | 1992 |
|
RU2046419C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ГАЗОВОГО ДАТЧИКА | 1994 |
|
RU2073853C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР | 1994 |
|
RU2087049C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВЫХ СТРУКТУР СО СКРЫТЫМ ДИЭЛЕКТРИЧЕСКИМ СЛОЕМ | 1998 |
|
RU2151446C1 |
Термохимический газоанализатор содержит чувствительный элемент в виде спирали, соединенной с проволочными выводами и заключенной внутри пористого носителя, обработанного катализатором, и установленной в держателе. В качестве держателя используется диэлектрическая подложка с пленочныим контактами, к которым прикрепляются проволочные выводы чувствительного элемента. Чувствительный элемент расположен над отверстием, выполненным в диэлектрической подложке. На участке диэлектрической подложки между отверстием и ее боковыми кромками выполнен пленочный нагреватель по меньшей мере с двумя пленочными контактами. 4 з.п.ф-лы, 1 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Борисов Г.К | |||
Катализ | |||
Вопросы теории и практики | |||
- Новосибирск: Наука, Сибирское отделение, 1987, с | |||
Система механической тяги | 1919 |
|
SU158A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аманназаров А | |||
и др | |||
Справочник | |||
Методы и приборы для определения водорода | |||
- М.: Химия, 1987, с | |||
Способ получения смеси хлоргидратов опийных алкалоидов (пантопона) из опийных вытяжек с любым содержанием морфия | 1921 |
|
SU68A1 |
Авторы
Даты
1998-09-27—Публикация
1996-06-18—Подача