СПОСОБ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА Российский патент 1999 года по МПК B01D53/00 B01D53/26 

Описание патента на изобретение RU2124930C1

Изобретение относится к процессам подготовки природного углеводородного газа перед его транспортировкой и может найти применение в газовой и нефтяной промышленности.

Известен способ подготовки природного газа к транспорту, включающий введение в поток газа метанола, ступенчатую сепарацию, охлаждение газа между ступенями сепарации, дегазацию и охлаждение нестабильного конденсата, полученного после каждой ступени сепарации, и противоточное контактирование конденсата со всех ступеней сепарации с отсепарированным газом в верхней зоне сепаратора последней ступени, в котором газ, полученный после дегазации нестабильного конденсата, подают в нижнюю зону сепаратора последней ступени сепарации (патент РФ N 1245826 А1, кл. F 25 J 3/00, опублик. 1986).

К недостаткам способа относится необходимость предварительного насыщения поступающего на обработку газа метанолом, что ведет к значительным потерям ингибитора с водной фазой, конденсатом и обработанным газом.

Известен способ и устройство для осушки углеводородного газа, при этом способ включает ступенчатую сепарацию и охлаждение газового потока между ступенями сепарации, введение в поток водорастворимого летучего органического ингибитора гидратообразования, разделение жидкости на углеводородную и водную фазы, выведение из сепараторов жидкости, в котором выведенную водную фазу со ступеней сепарации с более низкой температурой направляют в поток газа на одну из ступеней сепарации с более высокой температурой с последующей подачей на регенерацию водной фазы, содержащей ингибитор (патент США N 3633338, кл. В 01 d 53/00, С 07 с 9/02, опублик. 1972). К недостаткам способа относится низкая эффективность процесса саморегенерации ингибитора, рециркулирующего между ступенями сепарации, а также высокие энергозатраты при регенерации ингибитора выпариванием из выводимой с установки водной фазы. Кроме того, из-за присутствия солей в водной фазе осложняются условия работы установки регенерации.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ подготовки углеводородного газа к транспортировке, включающий ступенчатую сепарацию, охлаждение газового потока между ступенями сепарации, введение в поток водорастворимого летучего органического ингибитора гидратообразования, выведение из сепараторов жидкости, разделение ее на углеводородную и водную фазы, в котором выделенную водную фазу направляют в поток газа, поступающий на одну из предыдущих ступеней сепарации (патент РФ N 1350447 А1, кл. F 17 D 1/05, опублик.1993).

Основной недостаток способа - потери ингибитора с получаемой в процессе подготовки газа водной фазой, которая из-за низкой концентрации ингибитора не пригодна в качестве сырья для установки регенерации. Кроме того, присутствие метанола в утилизируемой водной фазе влечет за собой негативные экологические последствия.

Технический результат предлагаемого способа состоит в том, что сокращается расход метанола на предупреждение образования гидратов при подготовке газа, снижаются энергозатраты на регенерацию и уменьшается содержание токсичного ингибитора в промстоках.

Вышеуказанный технический результат достигается способом подготовки углеводородного газа, включающем ступенчатую сепарацию с охлаждением газового потока между ступенями сепарации, введение ингибитора гидратообразования метанола, вывод из сепараторов жидкой фазы, разделение ее на углеводородную и водометанольную фазы, подачу жидких углеводородов с первой ступени сепарации на противоточное контактирование с отсепарированным газом на последнюю ступень сепарации, объединение жидких фаз с последней и промежуточных ступеней сепарации, выделение из полученной смеси водометанольной фазы и подачу ее на контактирование с газом на первую ступень сепарации, выведение с этой ступени водометанольной фазы и регенерацию из нее метанола, возврат в поток газа регенерированного метанола, при этом на установку регенерации метанола направляют в виде бокового погона оставшуюся после стадии контактирования с продувочным газом водометанольную фазу с концентрацией метанола не менее 10 мас.%.

Сущность способа состоит в том, что метанол, который является летучим ингибитором, при контактировании водометанольного раствора с поступающим на обработку газом частично переходит в паровую фазу. При последующем охлаждении газового потока на ступенях сепарации метанол конденсируется и предотвращает образование гидратов. Эффективность данного приема тем выше, чем в большей степени поступающий на обработку газ выполняет функцию продувочного газа, и количество перешедшего из жидкого состояния в паровую фазу метанола возрастает.

В соответствии с наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату способом оставшаяся после стадии контактирования с газом водная фаза, содержащая метанол, смешивается с жидкими фазами, выделенными из поступающего на обработку газожидкостного потока. В результате смешения жидких фаз образуется водный раствор с низкой концентрацией метанола, который не пригоден для регенерации и после отделения от газа и жидких углеводородов выводится в промстоки.

Согласно изобретению водометанольную фазу, полученную после стадии контактирования с газом на первой ступени сепарации, выделяют и направляют на установку регенерации с последующим возвратом регенерированного метанола в поток газа. При этом исключается смешение водометанольной фазы, получаемой после стадии контактирования, с жидкостной смесью, выделенной из поступающего на подготовку газа. Это обеспечивает содержание метанола не менее 10 мас.% в выводимой после стадии контактирования с газом водометанольной фазе, что делает ее пригодной в качестве сырья для установки регенерации метанола. При наличии предварительной сепарации газа на первой ступени перед стадией контактирования выделение водометанольной фазы в виде бокового погона обеспечивает дополнительный эффект, поскольку при этом исключается попадание в водометанольную фазу минерализованной воды вследствие ее уноса со стадии предварительной сепарации газа.

Предлагаемый способ обеспечивает возврат метанола в технологический цикл подготовки газа и снижение энергозатрат на его регенерацию. Благодаря отсутствию минеральных солей в выводимой после контактирования с газом водометанольной фазе уменьшается солеотложение на установке регенерации метанола и поддерживается высокая эффективность ее работы. Снижаются негативные экологические последствия применения метанола для предупреждения гидратообразования.

На чертеже представлена схема обработки газа.

Поступающий из скважин газ подают на предварительную сепарацию в сепаратор 1, где из него выделяют углеводородный конденсат и воду. Отсепарированный газ проходит дополнительную очистку в нижней сепарационной зоне второго сепаратора первой ступени 2 и поступает в верхнюю зону сепаратора 2 на стадию контактирования с отработанным ингибитором гидратообразования - водометанольным раствором. Оставшуюся после стадии контактирования водометанольную фазу выводят в виде бокового погона из сепаратора 2 и направляют на установку регенерации метанола 5. Регенерированный метанол смешивают со "свежим" метанолом и повторно закачивают в газовый поток в качестве ингибитора гидратообразования. Водную фазу, получаемую на установке регенерации метанола, направляют в промстоки.

Выделенные при сепарации на первой ступени в сепараторах 1 и 2 жидкие фазы объединяют и направляют в емкость 6. В емкости 6 поступающую смесь разделяют на водную фазу, жидкие углеводороды и газ. Водную фазу направляют в промстоки, а газовую - в куб сепаратора-абсорбера 10. Углеводородную жидкость из емкости 6 охлаждают в рекуперативном теплообменнике 11 и подают на противоточное контактирование с газом в сепаратор-абсорбер 10.

В поток газа из сепаратора 2, содержащий пары метанола, дополнительно закачивают метанол, после чего газ охлаждают в воздушном холодильнике 3, рекуперативном теплообменнике 4, и направляют в сепаратор 7. В сепараторе 7 газ отделяют от сконденсировавшейся жидкости и через эжектор 8 и расширительное устройство 9 подают в сепаратор 10 на противоточное контактирование с углеводородной жидкостью из емкости 6. Обработанный в сепараторе-абсорбере 10 газ нагревают в теплообменнике 4 и направляют потребителям, а выделенную жидкость объединяют с жидкостью из сепаратора 7. Образовавшуюся смесь нагревают в рекуперативном теплообменнике 11 и подают в емкость 12 для разделения на газовую, водную и жидкую углеводородную фазы. Жидкие углеводороды из емкости 12 направляют потребителям, а газы дегазации через эжектор 8 - в абсорбер-сепаратор 10. Водную фазу, содержащую метанол, подают на стадию контактирования с газом в сепаратор первой ступени 2.

Для предотвращения гидратообразования на установке используют "свежий" метанол с концентрацией 95 мас.% и регенерированный метанол с такой же концентрацией.

Пример 1. Исходный пластовый газ состава, моль.% N2 0,51, СН4 89,98, СО2 0,21, С2Н6 4,44, С3Н8 1,91, С4Н10 1,01, С5Н12 + высш. 1,94 в количестве 400 тыс. нм3/ч поступает на установку обработки газа.

При обработке газа устанавливают следующие параметры: в сепараторах первой ступени 1, 2 давление 10 МПа и температура 25oС, в сепараторе 7 давление 9,8 МПа и температура минус 13oС, на входе в сепаратор-абсорбер 12 давление 5,5 МПа и температура минус 30oС.

В разделительной емкости 6 давление 5,7 МПа и температура 20oС, в разделительной емкости 13 давление 3 МПа и температура минус 4oС.

Углеводородный конденсат из разделительной емкости 5 в количестве 30 т/ч подают на орошение в сепаратор-абсорбер 10.

Количество жидкой воды, поступающей с газом из скважин, составляет 1400 кг/ч.

Для предупреждения гидратообразования метанол с исходной концентрацией 95 мас. % закачивают в поток газа перед воздушным холодильником 3. Отработанный ингибитор, который представляет собой водный раствор метанола с концентрацией 75 мас.%, выделяют в разделителе 12 в количестве 672 кг/ч и направляют на стадию контактирования с продувочным газом в сепаратор 2. Оставшуюся после стадии контактирования водометанольную фазу, выделенную в виде бокового погона из сепаратора 2 в количестве 304 кг/ч, и содержащую 38,8 мас. % метанола, направляют на установку регенерации. Регенерированный метанол в количестве 110 кг/ч смешивают со "свежим" метанолом и возвращают в технологический цикл подготовки газа.

Выделение оставшейся после стадии контактирования с продувочным газом водометанольной фазы в виде бокового погона предотвращает попадание в нее минерализованной воды вследствие механического уноса из сепаратора 1. Количество уносимой из сепаратора 1 воды с содержанием солей 10 мас.% составляет 70 кг/ч, и при отсутствии бокового погона на установку регенерации в составе водометанольной фазы поступает 7 кг/ч соли. Выделение оставшейся после стадии контактирования с продувочным газом водометанольной фазы в виде бокового погона сокращает эксплуатационные затраты, связанные с увеличением количества минерализованной воды в поступающем на регенерацию сырье и с последующим отложением солей в оборудовании установки регенерации метанола.

При реализации процесса по аналогу способа оставшуюся после стадии контактирования с газом водометанольную фазу смешивают с жидкостью, выделенной из поступающего на обработку газа. В результате смешения образуется водометанольная фаза в количестве 1704 кг/ч с содержанием метанола 6,9 мас.%. Из-за низкой концентрации метанола такой раствор не пригоден в качестве сырья для установки регенерации.

По сравнению с аналогом расход "свежего" метанола, используемого на установке, уменьшается с 456 до 346 кг/ч. Одновременно сокращаются потери метанола с промстоками - со 118 до 7,9 кг/ч.

Данные по примеру осуществления способа приведены в таблице.

Похожие патенты RU2124930C1

название год авторы номер документа
СПОСОБ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА 2000
  • Ананенков А.Г.
  • Бурмистров А.Г.
  • Кабанов Н.И.
  • Салихов З.С.
  • Ахметшин Б.С.
  • Петерс В.Я.
  • Якупов З.Г.
  • Лужкова Е.А.
  • Кубанов А.Н.
RU2161526C1
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ГАЗА 1998
  • Ананенков А.Г.
  • Салихов З.С.
  • Губин В.М.
  • Кабанов Н.И.
  • Мурин В.И.
  • Бурмистров А.Г.
  • Якупов З.Г.
  • Шевелев С.А.
  • Ахметшин Б.С.
  • Зайцев Н.Я.
RU2124929C1
СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА К ТРАНСПОРТУ 2012
  • Кардаш Александр Филиппович
RU2629845C2
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ГАЗА 1997
  • Ананенков А.Г.
  • Ахметшин Б.С.
  • Бурмистров А.Г.
  • Кабанов Н.И.
  • Маргулов А.Р.
  • Ставкин Г.П.
  • Шевелев С.А.
  • Якупов З.Г.
  • Варивода Ю.В.
RU2097648C1
СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО СЫРЬЯ С ГАЗОВОЙ ФАЗОЙ К ТРАНСПОРТУ 2014
  • Кардаш Александр Филиппович
RU2569348C1
Способ подготовки углеводородного газа к транспорту 1986
  • Бурмистров Александр Георгиевич
  • Истомин Владимир Александрович
  • Лакеев Владимир Петрович
  • Сулейманов Рим Султанович
  • Кульков Анатолий Николаевич
  • Колушев Николай Родионович
  • Ставицкий Вячеслав Алексеевич
SU1350447A1
СПОСОБ АБСОРБЦИОННОЙ ОСУШКИ УГЛЕВОДОРОДНОГО ГАЗА 2002
  • Ланчаков Г.А.
  • Кульков А.Н.
  • Истомин В.А.
  • Ставицкий В.А.
  • Ефимов Ю.Н.
RU2199375C1
СПОСОБ ОБРАБОТКИ ГАЗОКОНДЕНСАТНОЙ УГЛЕВОДОРОДНОЙ СМЕСИ 2005
  • Андреев Олег Петрович
  • Арабский Анатолий Кузьмич
  • Лебенкова Ирина Викторовна
  • Истомин Владимир Александрович
RU2283689C1
СПОСОБ ОБРАБОТКИ ГАЗОКОНДЕНСАТНОЙ УГЛЕВОДОРОДНОЙ СМЕСИ 2005
  • Андреев Олег Петрович
  • Арабский Анатолий Кузьмич
  • Лебенкова Ирина Викторовна
  • Истомин Владимир Александрович
RU2283690C1
Способ подготовки природного газа к транспорту 1987
  • Бурмистров Александр Георгиевич
  • Истомин Владимир Александрович
  • Кульков Анатолий Николаевич
  • Губяк Владимир Емельянович
  • Лакеев Владимир Петрович
  • Кабанов Николай Иванович
  • Ставицкий Вячеслав Алексеевич
SU1466782A1

Иллюстрации к изобретению RU 2 124 930 C1

Реферат патента 1999 года СПОСОБ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА

Изобретение относится к процессам подготовки природного углеводородного газа перед его транспортировкой и может найти применение в газовой и нефтяной промышленности. Способ подготовки углеводородного газа, включающий ступенчатую сепарацию с охлаждением газового потока между ступенями сепарации, введение ингибитора гидратообразования метанола, вывод из сепараторов жидкой фазы, разделение ее на углеводородную и водометанольную фазы, подачу жидких углеводородов с первой ступени сепарации на противоточное контактирование с отсепарированным газом на последнюю ступень сепарации, объединение жидких фаз с последней и промежуточных степеней сепарации, выделение из полученной смеси водометанольной фазы и подачу ее на контактирование с газом на первую ступень сепарации, выведение с этой ступени водометанольной фазы и регенерацию из нее метанола, возврат в поток газа регенерированного метанола, при этом на установку регенерации метанола направляют в виде бокового погона оставшуюся после стадии контактирования с продувочным газам водометанольную фазу с концентрацией метанола не менее 10 мас%. Способ позволяет снизить негативные экологические последствия применения метанола для предупреждения гидратообразования. 1 ил., 1табл.

Формула изобретения RU 2 124 930 C1

Способ подготовки углеводородного газа, включающий ступенчатую сепарацию с охлаждением газового потока между ступенями сепарации, введение ингибитора гидратообразования метанола, вывод из сепараторов жидкой фазы, разделение ее на углеводородную и водометанольную фазы, подачу жидких углеводородов с первой ступени сепарации на противоточное контактирование с отсепарированным газом на последнюю ступень сепарации, объединение жидких фаз с последней и промежуточных ступеней сепарации, выделение из полученной смеси водометанольной фазы и подачу ее на контактирование с газом на первую ступень сепарации, выведение с этой ступени водометанольной фазы и регенерацию из нее метанола, возврат в поток газа регенерированного метанола, отличающийся тем, что на установку регенерации метанола направляют в виде бокового погона оставшуюся после стадии контактирования с продувочным газом водо-метанольную фазу с концентрацией метанола не менее 10 мас.%.

Документы, цитированные в отчете о поиске Патент 1999 года RU2124930C1

Способ подготовки углеводородного газа к транспорту 1986
  • Бурмистров Александр Георгиевич
  • Истомин Владимир Александрович
  • Лакеев Владимир Петрович
  • Сулейманов Рим Султанович
  • Кульков Анатолий Николаевич
  • Колушев Николай Родионович
  • Ставицкий Вячеслав Алексеевич
SU1350447A1
СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ПРИРОДНОГОГАЗА 0
SU176354A1
СПОСОБ ОЧИСТКИ П1РИРОДНОГО или НЕФТЯНОГО ГАЗА 0
SU355210A1
Способ подготовки природного газа к дальнему транспорту 1975
  • Максимов Владимир Петрович
  • Агишев Александр Петрович
  • Ткаченко Михаил Федорович
  • Будымка Виталий Федорович
  • Язик Александр Валентинович
  • Твердохлебов Виктор Иванович
  • Власюк Олег Иванович
  • Босов Геннадий Павлович
  • Гриценко Александр Иванович
  • Пестун Николай Прохорович
  • Богданов Валерий Александрович
SU593720A1
Способ очистки природного газа 1978
  • Киселев Виктор Михайлович
  • Градюк Василий Тимофеевич
  • Киселева Светлана Алексеевна
SU1101638A1
Способ глубокой осушки газа 1983
  • Плужников Геннадий Спартакович
  • Ледяшова Галина Евгеньевна
  • Брещенко Евгений Максимович
  • Сухомлинова Галина Леонидовна
SU1153961A1
DE 3403635 A, 09.08.84
ВСЕСОЮЗНАП 0
  • Л. М. Суворов, Т. Ф. Авдиенко, А. И. Яковлев, В. Хин, А. И. Козлин Л. А. Токарев
SU387277A1

RU 2 124 930 C1

Авторы

Ананенков А.Г.

Салихов З.С.

Бурмистров А.Г.

Якупов З.Г.

Даты

1999-01-20Публикация

1998-06-23Подача