Изобретение относится к области авиационной технике, в частности к системам охлаждения оборудования скоростных самолетов.
Летательные аппараты, перемещающиеся в атмосфере с высокими скоростями, подвержены аэродинамическому нагреву при обтекании фюзеляжа воздушными потоками. Другими источниками нагрева являются солнечные лучи, а также работающие силовые установки самого летательного аппарата. В то же время для работы многих систем самолета необходимо поддерживать весьма умеренные температуры, которые не всегда удается обеспечить обычной вентиляцией.
Известен способ охлаждения бортовых систем летательных аппаратов, основанный на использовании давления торможения встречного потока забортного воздуха и реализуемый системой, состоящей из воздухозаборника, турбины, теплообменника и нагружающего турбину компрессора (патент US N 2453923, 1948). В указанном способе воздух, поступивший в воздухозаборник, делят на два потока. Один из потоков направляют в турбину, где воздух в результате адиабатического расширения понижает свою температуру (и давление). После турбины эта часть воздушного потока проходит через теплообменник, а затем поступает в компрессор, сидящий на валу турбины. Второй поток воздуха также проходит через теплообменник, где его температура понижается за счет контакта через стенку с более холодным первым потоком. После выхода из теплообменника второй поток используют непосредственно для охлаждения бортовых систем и/или помещений летательного аппарата.
Недостатком указанного способа является малая величина степени расширения воздуха в турбине из-за значительного по величине аэродинамического сопротивления теплообменника по воздушной стороне и входных и выходных каналов, подводящих и отводящих забортный воздух от турбохолодильника. Поскольку степень снижения температуры заборного воздуха определяется величиной степени расширения его в турбине, увеличение последней позволяет с одной стороны снизить весогабаритные показатели турбохолодильника и теплообменника, а с другой стороны - обеспечить необходимый отвод тепла от теплоносителя, охлаждаемого в теплообменнике, в тех случаях, когда верхний допустимый уровень температуры этого теплоносителя близок к 60 - 70oC.
Для снижения температуры выходящего из турбины забортного воздуха предлагается снабдить воздухозаборник диффузором и использовать выходное эжекторное устройство, создающее дополнительное разряжение на выходе из компрессора за счет использования давления торможения дополнительного потока встречного забортного воздуха.
Способ охлаждения бортовых систем согласно изобретению включает в себя разделение потока забортного воздуха, сжатого во входном диффузоре, на две части. Первую часть направляют в турбину (турбохолодильник), где воздух политропически расширяется, совершая работу, а затем нагревается в теплообменнике и сжимается компрессором, сидящим на валу турбины. Вторая часть поступает в эжекторное устройство, в сопле которого воздух разгоняется до скорости, обеспечивающей заданную степень разряжения, а затем в камере смешения разгоняет поступивший из компрессора воздух, обмениваясь с ним количеством движения. Оба потока смешиваются и, частично восстановив давление в диффузоре эжекторного устройства, сбрасываются за борт. Выбор места входа забортного воздуха и места его выброса при заданных площадях входного и выходного отверстий и прочих равных условиях должен обеспечивать максимальный по величине поток воздуха через турбохолодильник. Объемное соотношение первого и второго потоков забортного воздуха (Gэж/Gтх) может находиться в пределах от 1:1 до 1:4.
При эксплуатации летательных аппаратов в особо жарких условиях, например при полетах над пустынями, охлаждение бортовых систем предлагаемым способом по одноступенчатой схеме может оказаться недостаточным. В таких случаях охлаждение можно проводить в две ступени, используя дополнительные турбины и компрессор, а также вспомогательный теплообменник.
При этом первую часть разделенного воздушного потока дополнительно делят на основной и вспомогательный потоки. Основной поток перед поступлением в основную турбину охлаждают во вспомогательном теплообменнике, в котором охлаждающим агентом является вспомогательный поток. Вспомогательный поток пропускают через дополнительную турбину, вспомогательный теплообменник и дополнительный компрессор, сидящий на валу дополнительной турбины, после чего объединяют с основным потоком, выходящим из основного компрессора. В этом случае объемное соотношение между первой и второй частью разделенного потока воздуха поддерживают в пределах от 1:1 до 1:2. Такое же объемное соотношение (в пределах от 1: 1 до 1:2) поддерживают и между основным и вспомогательным потоками при делении первой части общего потока.
Для летательных аппаратов, которые могут перемещаться как с дозвуковыми, так и со сверхзвуковыми скоростями, диффузор воздухозаборника выполняют с возможностью регулировки его профиля и/или сечения.
На фиг. 1 показана принципиальная схема движения захваченного встречного потока воздуха по системам летательного аппарата при одноступенчатом процессе охлаждения. Позицией 1 на чертеже обозначен диффузор воздухозаборника; позицией 2 - зона разделения потока; 3 - турбина и 4 - компрессор, сидящие на одном валу 5; 6 - теплообменник с магистралью 7 жидкостного хладоагента; 8 - выпускное эжекторное устройство.
На фиг. 2 изображена T - S диаграмма процессов, проходящих с частью потока захваченного забортного воздуха, направляемой в турбину. Участок a - b на диаграмме соответствует сжатию воздуха во входном диффузоре; участок b - c расширению воздуха в турбине; c - d нагреванию в теплообменнике; d - e сжатию в компрессоре и e - f сжатию в выпускном эжекторном устройстве.
На фиг. 3 - схема движения захваченного встречного потока воздуха по системам летательного аппарата при двухступенчатом процессе охлаждения. Позиции 1 - 8 обозначают те же элементы схемы, что и на фиг. 1. Позицией 9 на чертеже обозначена зона дополнительного разделения первой части захваченного забортного воздуха на основной и вспомогательный потоки; позицией 10 - дополнительная турбина и 11 - дополнительный компрессор, сидящие на одном валу 12. Позиция 13 обозначает вспомогательный теплообменник, 14 - зона объединения основного и вспомогательного потоков перед поступлением в выпускное эжекторное устройство 8.
Сведения, подтверждающие возможность осуществления изобретения
Пример 1. Способ осуществляли по одноступенчатой схеме на установке (турбина 3 и компрессор 4 на одном валу 5) с габаритами: длина 300 мм (без подводящих и отводящих патрубков), диаметр - 240 мм, вес установки 15 кг. Температура воздуха за бортом составляла 313 К (40oC), расход воздуха на охлаждение - 1300 кг/час, расход антифриза - 1480 кг/час. При 60oC плотность (ρ) антифриза составляла 1062 кг/м3, удельная теплоемкость (Cp) - 3,303 кдж/кг•град; при 80oC соответственно ρ = 1048 кг/м3и Cp = 3,455 кдж/кг•град.
В процессе проведения испытаний температура воздуха перед турбиной 3 составляла 329 К, температура за турбиной 3 на входе в теплообменник 6 составляла 290 К, перед компрессором 4 - 331 К и за компрессором 4 - 370 К. Соответственно давление воздуха перед турбиной 3 составляло 1,13 ата, давление за турбиной 3 перед теплообменником 6 составляло 0,645 ата, перед компрессором 4 - 0,595 ата и за компрессором 4 - 0,80 ата.
Температура антифриза, направляемого на охлаждение бортовых систем по магистрали 7, снижалась в возлушно-жидкостном теплообменнике 6 на 12o (с 344 К до 332 К), что позволяло поддерживать температуру бортовых систем самолета в пределах, обеспечивающих нормальное их функционирование.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГЕНЕРАЦИИ ЗАКОКСОВАННОГО КАТАЛИЗАТОРА | 1997 |
|
RU2113902C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ НАГРЕТОГО ТЕПЛОНОСИТЕЛЯ | 1996 |
|
RU2115065C1 |
САМОЛЁТ | 2002 |
|
RU2212359C1 |
ГЛИССИРУЮЩЕЕ СУДНО | 1998 |
|
RU2131373C1 |
ГЛИССИРУЮЩЕЕ СУДНО | 1998 |
|
RU2131822C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА НА САМОЛЕТЕ | 1997 |
|
RU2170192C2 |
СИСТЕМА ВЕНТИЛЯЦИИ ТЕПЛОВЫДЕЛЯЮЩЕГО ОБОРУДОВАНИЯ, РАЗМЕЩЕННОГО ВО ВНЕШНЕМ КОНТЕЙНЕРЕ ЛЕТАТЕЛЬНОГО АППАРАТА | 2023 |
|
RU2820773C1 |
Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации | 2016 |
|
RU2632057C2 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА | 2001 |
|
RU2220884C2 |
Энергоёмкая система кондиционирования воздуха для воздушного судна | 2023 |
|
RU2807448C1 |
Изобретение относится к области авиационной техники в частности к системам охлаждения оборудования скоростных самолетов. Способ охлаждения бортовых систем включает разделение потока забортного воздуха, сжатого во входном диффузоре, на две части. Первую часть направляют в турбину, где воздух политропически расширяется, совершая работу, а затем нагревают в теплообменнике и сжимают компрессором, сидящим на валу турбины. Вторая часть поступает в эжекторное устройство, в сопле которого воздух разгоняется до скорости, обеспечивающей заданную степень разрежения, а затем в камере смешения разгоняет поступивший из компрессора воздух, обмениваясь с ним количеством движения. Оба потока смешиваются и после частичного восстановления давления в диффузоре эжекторного устройства, сбрасываются за борт. Способ позволяет в одноступенчатом процессе на 12o снижать температуру антифриза, охлаждающего бортовые системы самолета, и, таким образом, обеспечивать нормальные условия их функционирования при эксплуатации в жарком климате, 4 з.п.ф-лы, 3 ил.
Устройство для автоматической смены инструмента | 1981 |
|
SU996166A1 |
US 3552883, 24.07.69 | |||
Устройство для охлаждения воздушно-масляных радиаторов и др. агрегатов самолетов с турбовинтовыми двигателями | 1958 |
|
SU118364A1 |
СИСТЕМА ДЛЯ ВЗИМАНИЯ СБОРА ЗА ПОЛЬЗОВАНИЕ АВТОДОРОГАМИ, ВКЛЮЧАЮЩАЯ В СЕБЯ УСТАНОВЛЕННЫЙ В АВТОМОБИЛЕ БОРТОВОЙ МОДУЛЬ | 2006 |
|
RU2453923C2 |
Авторы
Даты
1999-03-10—Публикация
1997-11-21—Подача