ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДНИК Российский патент 1999 года по МПК H01L39/12 

Описание патента на изобретение RU2128383C1

Изобретение относится к области высокотемпературной сверхпроводимости и может быть использовано при создании перспективных линий электропередач и энергетических установок.

Параметры известных высокотемпературных сверхпроводников (ВТСП) на основе сверхпроводящих керамических материалов в настоящее время подошли к предельным значениям, и повышение их качественных характеристик за последние годы значительно замедлилось. Предлагаемый высокотемпературный сверхпроводник представляет новый класс сверхпроводников с предельными температурами сверхпроводящего перехода (Тс) вплоть до комнатных температур и не имеет общих признаков с известными.

В настоящее время высокотемпературная сверхпроводимость наиболее широко подтверждена в ВТСП-керамике, но ВТСП-керамика является существенно неоднородным сверхпроводником. То, что интересные явления нормальной проводимости и сверхпроводимости разыгрываются в купратных плоскостях ВТСП-керамики, с одной стороны, как раз и приводит к высоким значениям Тc, а с другой, создает значительные трудности. Уже первые эксперименты по измерению температурной зависимости магнитной восприимчивости показали [1], что переход по X начинается вблизи Тc, найденного по измерениям R(T) и, как правило, более растянут, чем резистивный, что свидетельствует о малости количества высокотемпературной фазы или большой глубине проникновения поля. Во многих работах указывается на анизотропию критических магнитных полей, гистерезисные явления при измерении кривой намагничивания [2]. В сочетании с большой ролью межгранульных контактов, анизотропией критических токов, вплоть до потери сверхпроводимости на длинном участке провода, это создает большие трудности для работ по прикладной сверхпроводимости.

Сущность изобретения заключается в том, что предлагается высокотемпературный сверхпроводник, отличающийся для повышения критической температуры сверхпроводящего перехода Тс тем, что представляет из себя фосфид лития PLi3 повышенной плотности ρ > 1,6 г/см3.
Фосфид лития PLi3 является малоизученным соединением, о нем имеются в основном устаревшие отрывочные сведения, но все-таки известно, что это недостаточно стойкий диэлектрик, поэтому основная нагрузка ложится на фазовые превращения фосфида лития. Поскольку доминирующим в соединении является сохранение энергетически устойчивой конфигурации с заполненной внешней p-оболочкой иона фосфора P3-, то под действием давления будет происходить ионизация 3s2 оболочки с переходом
3s2р6 _→ 3sp6+e-,
где e- - свободный электрон.

Подобного рода переходы характерны при образовании твердых тел и переходах полупроводник-металл элементов V группы, так для висмута в твердом теле характерен переход s2p3 _→ sp3+e-.

В случае фазы высокого давления фосфида лития очевидно справедлив блоховский подход и можно рассматривать движение полярона большого радиуса в сплошной слабо поляризуемой (средний дипольный момент молекул Pe=0) диэлектрической среде. Но в этом случае биполярон практически не отличается от куперовской пары. Тогда физический механизм ВТСП можно представить следующим образом: формальная независимость ω и λ в уравнениях Элиашберга оказывается оправданной, т. к. достаточно сильное взаимодействие электронов с локализованными фононами не оказывает значительного обратного воздействия на кристаллическую решетку из-за слабой связи электронов с колебаниями решетки и внутримолекулярных колебаний с низкочастотными акустическими колебаниями тяжелых ионов.

В этой области

условия полярона большого радиуса,
где λ - параметр связи;
ne - концентрация электронов на сложный ион;
E - ширина исходной зоны;
EB - энергия локализации полярона на узле решетки;
f(z) - функция, учитывающая тип кристаллической решетки,
модели поляронной сверхпроводимости [3] и сильной электрон-фононной связи [4] близки и для оценки Тe, при незначительном изменении частоты молекулярных колебаний в твердом теле можно записать:

где
где U - энергия связи ионов фосфора и лития;
m1, m2 - массы ионов;
R0 - длина химической связи, коэффициент C ≈ 1/2.

Эта оценка дает Тс≈500oC при одновременном достижении однородного характера сверхпроводимости, что значительно превышает параметры известных сверхпроводников. Следует обратить внимание, что здесь, как и в других случаях использования разных фазовых состояний вещества, само вещество, его химический состав не изменяются. Соотношение ρ > 1,6 г/см3 может несущественно изменяться при смещении фазового соотношения в системе и под влиянием примесей.

Источники информации
[1] Chu C.W., Ног P.H., Meng R.L., Gao L., Huang Z.J., Wang Y.Q., Bechtold J. , Campbell D., Wu M.K., Ashburn J., Huang C.Y. // Preprint Hoisten University. USA. 1987.

[2] Maslov S.S., Pokrovsky V.L. // Europhys. Lett. 1991. V. 14. P. 591.

[3] A.C. Александров, А.Б. Кребс // УФН. 1992. Т. 162. N5. C.1.

[4] Г. М. Элиашберг. Взаимодействие электронов с колебаниями решетки в сверхпроводниках. ЖЭТФ 1960, 38, с. 976.

Похожие патенты RU2128383C1

название год авторы номер документа
ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДНИК НА ОСНОВЕ СИЛИЦИДА ЛИТИЯ 2004
  • Дончак Андрей Александрович
RU2351677C2
ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДНИК НА ОСНОВЕ ФОСФИДА ЛИТИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2001
  • Калинин В.Б.
  • Иванов В.И.
  • Сорокин Ю.В.
  • Шилов И.П.
  • Дончак А.А.
RU2267190C2
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩЕГО МАТЕРИАЛА НА ОСНОВЕ Bi-2223 С КРИТИЧЕСКОЙ ТЕМПЕРАТУРОЙ ПЕРЕХОДА 197 К 2014
  • Рабинович Ксения Сергеевна
  • Самойленко Леонид Леонидович
  • Шнейдер Александр Георгиевич
RU2568463C1
СВЕРХПРОВОДЯЩАЯ ПОЛУПРОВОДНИКОВАЯ НАНОСТРУКТУРА С КВАНТОВЫМИ ЯМАМИ 2002
  • Кадушкин В.И.
RU2227346C1
Модификатор и способ изменения электрофизических и магнитных свойств керамики 2021
  • Эпштейн Олег Ильич
  • Тарасов Сергей Александрович
  • Буш Александр Андреевич
  • Харчевский Антон Александрович
RU2768221C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДНИКОВОГО ПРИБОРА 2005
  • Григорашвили Юрий Евгеньевич
  • Бухлин Александр Викторович
  • Мингазин Владислав Томасович
RU2298260C1
СПОСОБ ПОЛУЧЕНИЯ ПЛОТНОЙ ТЕКСТУРИРОВАННОЙ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ НА ОСНОВЕ ВИСМУТА 2006
  • Петров Михаил Иванович
  • Балаев Дмитрий Александрович
  • Белозерова Ирина Леонидовна
  • Гохфельд Денис Михайлович
  • Попков Сергей Иванович
  • Мартьянов Олег Николаевич
  • Шайхутдинов Кирилл Александрович
RU2339598C2
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ЧАСТИЦ 1998
  • Найденков А.Ф.
  • Стабников М.В.
RU2149425C1
СВЕРХПРОВОДЯЩИЙ ПЕРЕКЛЮЧАТЕЛЬ ТОКА 1989
  • Волков А.Ю.
SU1759204A1
ГИБКИЙ ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДНИК И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2021
  • Ли Сергей Романович
  • Маркелов Антон Викторович
  • Молодык Александр Александрович
  • Петрыкин Валерий Викторович
  • Самойленков Сергей Владимирович
RU2761855C1

Реферат патента 1999 года ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДНИК

Использование: изобретение относится к области высокотемпературной сверхпроводимости, может быть использовано при создании перспективных линий электропередач и энергетических установок. Техническим результатом изобретения является повышение критической температуры сверхпроводящего перехода. Сущность изобретения: в качестве высокотемпературного сверхпроводника применен фосфид лития РLi3 повышенной плотности ρ > 1,6 г/см3.

Формула изобретения RU 2 128 383 C1

Применение фосфида лития PLi3 повышенной плотности ρ > 1,6 г/см3 в качестве сверхпроводника.

Документы, цитированные в отчете о поиске Патент 1999 года RU2128383C1

Сверхпроводящий полупроводниковый материал 1989
  • Парфеньев Р.В.
  • Шамшур Д.В.
  • Драбкин И.А.
  • Бушмарина Г.С.
  • Шахов М.А.
SU1686985A1
УСТРОЙСТВО ДЛЯ ОБРЕЗКИ НИТЕЙИГЛ и 0
SU282193A1
US 5106827 A, 21.04.92
US 5063202 A, 05.11.91.

RU 2 128 383 C1

Авторы

Дончак А.А.

Даты

1999-03-27Публикация

1993-11-01Подача