Настоящее изобретение имеет отношение к очистке газообразного гексафторида урана (UF6), а более конкретно, настоящее изобретение касается удаления фтористых загрязнений из газового потока UF6.
При повторной обработке облученного топлива ядерного реактора с целью получения рециркулированного уранового сырья, которое фторируется для получения UF6, обычно присутствует ряд примесей (загрязнений), которые в процессе фторирования сырья могут образовывать фториды, летучесть которых сопоставима с летучестью UF6. Например, поток реагентов, полученных из облученного топлива коммерческого ядерного реактора, содержит как трансурановые элементы Np, Pu и Am, так и переходные элементы Tc, Rh и Ru. Трансурановые элементы обычно образуют ориентировочно 0,95 вес.% металлической основы, а упомянутые выше переходные элементы образуют ориентировочно 0,38 вес. %. Уран обычно присутствует на уровне ориентировочно 96 вес.%.
В то время как фториды упомянутых выше переходных элементов обычно имеют летучести, значительно отличающиеся от летучести UF6, что позволяет их отделить при помощи фракционной отгонки, такие фториды как гексафторид нептуна (NpF6) и плутония (PuF6) не отличаются по летучести от UF6, поэтому в результате они остаются в газовом потоке UF6 после его обработки при помощи фракционной отгонки.
Известные ранее методы удаления фтористых примесей из уранового сырья, получаемого из облученного топлива ядерного реактора, предусматривают использование целого ряда технологий. В некоторых случаях сырье контактирует с водным раствором ранее образования UF6. Недостатком такого решения является увеличение объема радиоактивных отходов. В других случаях используют фториды щелочных металлов для отделения загрязнений при помощи избирательной сорбции. Этот процесс также ведет к возрастанию объема продуктов рaдиоактивных отходов.
Среди других известных процессов можно указать на процесс, описанный в патенте США N 4364906, в соответствии с которым используют карбонат кальция в качестве улавливающего вещества для очистки газового потока UF6. Однако и при таком процессе имеется тенденция к образованию больших объемов продуктов отходов. В патенте США N 3806579 описана отгонка загрязнений MoF6 и WF6 от UF6. В патенте США N 4311678 описано использование агента бромирования для удаления отложений продуктов гидролиза UF6 со стенок аппаратуры, в которых производилась обработка UF6. Такой процесс будет приводить как к потере некоторого количества UF6, так и к образованию загрязнений. Более успешная в некотором отношении технология описана в патенте США N 4555318, в котором предусматривается контактирование газового потока UF6 со слоем твердого UF5. Эта технология основана на восстановлении газообразного NpF6 при помощи UF5 для удаления примесей, в результате чего в процессе создается твердый NpF5. Указывается, что этот процесс нельзя отнести к высокоэффективным и что, возможно, требуемое восстановление и удаление примесей является не единственным протекающим процессом. Аналогичный подход описан в eвропейских патентах N 0087358 и 0088006, в которых PbF2 и CoF2, используются аналогично описанному для UF5. Использование твердого фторидного слоя для удаления примесей обязательно будет приводить к образованию больших объемов твердых отходов, которые должны будут в дальнейшем подвергаться дополнительной обработке. Кроме того, известно, что использование CoF2 представляет собой не очень эффективный способ удаления NpF6. Оба указанных способа имеют недостатки, а именно обладают низкой эффективностью и высокой степенью образования отходов.
Задачей настоящего изобретения является создание способа очистки газового потока UF6 без сопровождающего этот способ увеличения объема продуктов отходов.
В соответствии с первым аспектом настоящего изобретения предлагается способ очистки газового потока UF6, который предусматривает облучение газового потока UF6 лазерным излучением в реакционном сосуде, для того чтобы избирательно преобразовать фтористые загрязнения в газовом потоке в нелетучие продукты с последующим выводом очищенного газового потока UF6 из реакционного сосуда и отдельным удалением загрязнений из сосуда.
Фтористые загрязнения в газовом потоке UF6 могут содержать NpF6 и PuF6.
Известно, что каждая из молекул UF6, NpF6 и PuF6 испытывает широкое интенсивное поглощение в области энергий свыше 20000 см-1, как это показано ниже, и что молекулы диссоциируют при энергиях в области от 30000 см-1 до 20000 см-1, что также показано ниже. Кроме того, однако, молекулы NpF6 и PuF6 поглощают в дискретных переходах при энергиях ниже ориентировочно 20000 см -1, а именно в диапазоне ориентировочно от 10000 см-1 до 7000 см-1 для NpF6 и ориентировочно от 13000 см-1 до 9000 см-1 для PuF6. В связи с указанным существует возможность избирательного возбуждения молекул NpF6 и PuF6 при помощи лазерного излучения, с тем, чтобы отделить их из газового потока UF6.
Преимущественно газовый поток UF6 облучается излучением лазера в трех различных полосах длин волн, например, от трех лазерных источников, чтобы избирательно возбуждать примеси NpF6 и PuF6.
Желательно производить выбор комбинации лазерных энергий таким образом, чтобы каждая из примесей NpF6 и PuF6 в газовом потоке UF6 поглощала фотоны из поля радиации, так чтобы молекулы NpF6 и PuF6 были возбуждены выше их порогов диссоциации, в результате чего они диссоциировали бы в нелетучие низшие фториды и атомы фтора. Молекулы UF6 при этом не диссоциируют в радиационном поле.
Газовый поток UF6 преимущественно облучается при помощи лазерного излучения в два этапа: на первом этапе молекулы NpF6 и PuF6 возбуждаются полем лазерного излучения, имеющим энергии в диапазоне от 10000 см-1 до 7000 см-1 и от 13000 см-1 до 9000 см-1 соответственно, а более предпочтительно лазерным излучением, имеющим энергии в диапазоне от 9528 см-1 до 9583 см-1 соответственно; на втором этапе молекулы NpF6 и PuF6 возбуждаются лазерным излучением, имеющим энергии в диапазоне от 17500 см-1 до 24000 см-1, а более предпочтительно лазерным излучением, имеющим энергию 19570 см-1, причем в результате двухстадийного облучения молекулы NpF6 и PuF6 возбуждаются над их порогами диссоциации таким образом, что они диссоциируют в нелетучие продукты, содержащие низшие фториды, которые осаждаются на стенках сосуда в виде твердых отложений.
Энергия лазерного излучения на втором этапе может быть преимущественно такой энергией, что излучение не поглощается молекулами UF6 и поэтому газ UF6 остается неизменным.
Обычно на первом этапе лазерного облучения молекулы NpF6 и PuF6 могут быть соответственно облучены при помощи двух (отдельных) твердотельных лазеров, причем преимущественно в качестве лазеров выбирают твердотельные лазеры с примесью Nd3+. Более предпочтительно, молекулы NpF6 могут быть облучены при помощи фторцирконатного лазера с примесью (легирующей добавкой) Nd3+, в то время как молекулы PuF6 могут быть облучены при помощи фторберрилятного стеклянного лазера с примесью Nd3+.
На втором этапе лазерного облучения молекулы NpF6 и PuF6 обычно облучаются при помощи излучения лазера на парах меди или при помощи аргонионного лазера высокой мощности.
Преимущественно удаление нелетучих продуктов из сосуда может быть осуществлено контактированием указанных продуктов с одним или несколькими фторирующими веществами с целью образования газообразных продуктов. Могут использоваться химические фторирующие вещества, причем подходящими химическими фторирующими веществами являются IF7, BrF3 и ClF3. В качестве альтернативы могут быть использованы фотохимические фторирующие вещества в сочетании с облучением от источника ультрафиолетовой энергии с целью образования газообразных продуктов. Подходящими фотохимическими фторирующими веществами являются F2 и ClF.
В соответствии с другим аспектом настоящего изобретения предлагается система очистки газового потока UF6 при помощи способа, соответствующего первому аспекту настоящего изобретения, причем эта система включает в себя реакционный сосуд, источник не очищенного UF6, источник газообразного фторирующего вещества, например фтора, средства впуска указанного не очищенного UF6 и указанного фторирующего вещества в реакционный сосуд, средства разделения газов, отходящих из реакционного сосуда, и средства сбора разделенных газов.
Преимущественно содержимое реакционного сосуда может быть облучено комбинацией лазерного и ультрафиолетового источников.
Обычно реакционный сосуд может иметь оптически прозрачное окно, которое является оптически прозрачным для энергий лазерного и ультрафиолетового излучений от источников.
Преимущественно ряд указанных систем может быть включен последовательно для получения UF6 высокой чистоты.
Дальнейшее преимущество заключается в том, что секции каскадированной системы могут быть отключены для проведения технического обслуживания и для удаления накопленных загрязнений.
Способ в соответствии с настоящим изобретением особенно хорошо подходит для очистки газового потока UF6, так как при этом удается избежать применения мокрой химической обработки, а также потому, что не образуются большие объемы продуктов отходов, которые требуют дальнейшей обработки и/или хранения.
В патенте США N 4,670,239 показано, что возможна прямая фотодиссоциация PuF6 в PuF5 с использованием светового излучения. Однако такая фотодиссоциация не была использована для разделения газа PuF6 от других соединений, а просто применялась как способ приготовления PuF5.
Далее будут описаны варианты осуществления настоящего изобретения, приведенные только в качестве примера со ссылкой на сопроводительные чертежи.
На фиг.1 показан график энергии в зависимости от поперечного сечения поглощения, показывающий секторы поглощения молекул UF6, NpF6 и PuF6.
На фиг.2 схематически показано поглощение молекул UF6, NpF6 и PuF6.
На фиг.3 схематически показана система для очистки газового потока UF6.
На фиг.4 с увеличением показана в сечении часть системы фиг.3.
Обратимся теперь к рассмотрению фиг. 1, на которой показаны спектры поглощения молекул UF6, NpF6 и PuF6 в диапазоне от 50000 см-1 до 5000 см-1. На фиг.2 приведено поглощение для каждой из упомянутых выше молекул, которое представлено схематически совместно с их измеренными энергиями диссоциации. Можно видеть, что каждая из молекул обладает широким интенсивным поглощением в области выше ориентировочно 20000 см-1 и что молекулы диссоциируют при энергиях в диапазоне от 30000 см-1 до 20000 см-1. Кроме того, как показано на фиг.2, молекулы NpF6 и PuF6 поглощают в дискретных переходах при энергиях ниже 20000 см-1 (в частности, в диапазоне от 10000 см-1 до 7000 см-1 для NpF6 и от 13000 см-1 до 9000 см-1 для PuF6).
Обратимся теперь к рассмотрению фиг.3, на которой показана система 10 очистки газового потока UF6 с использованием характеристик поглощения NpF6 и PuF6. В реакционный сосуд 12 системы 10 подается неочищенный газ UF6 от источника 14 и газ фтор от источника 16. Источник 14 UF6 соединен при помощи линии 18 с вентилем 20, который линией 22 соединен с входной линией 24, которая связана с реакционным сосудом 12. Источник фтора 16 соединен при помощи линии 26 с вентилем 28, который линией 30 соединен с входной линией 24.
Выходная линия 32 связывает реакционный сосуд 12 с вентилем 34. Линия 36 идет от вентиля 34, проходя через охлаждаемую ловушку 38, и соединяется с вентилем 40 на четыре пути. Вентиль 40 связан с тремя другими линиями 42, 44 и 46, которые соответственно соединяют его с тремя резервуарами 48, 50 и 52.
В непосредственной близости от одного из концов реакционного сосуда 12 располагаются три лазерных источника 54, 56 и 58 и источник ультрафиолетового излучения 60.
Как показано на фиг. 4, реакционный сосуд 12 подключен к входной линии 24 вблизи от одного из своих концов и подключен к выходной линии 32 вблизи от другого из своих концов. Реакционный сосуд 12 изготовлен из такого материала, как никель или монель-металл, которые обладают стойкостью к UF6. На одном из концов реакционный сосуд 12 имеет окно 62, изготовленное из материала, который является оптически прозрачным для энергий лазерного и ультрафиолетового излучения от источников 54, 56 58 и 60. Подходящим материалом для изготовления окна 62 является фторид магния. Реакционный сосуд 12 используется в качестве ячейки фотолиза, в которую излучение от источников 54, 56, 58 и 60 проходит через окно 62 и вступает в контакт с материалом, содержащимся в реакционном сосуде 12. В местах соединения с входной и выходной линиями 24 и 32 реакционный сосуд 12 имеет фильтры 64, которые защищают внешний газовый контур от проникновения частиц, которые образуются в реакционном сосуде 12.
При включении в работу системы 10 (фиг. 3) первоначально вентили 20 и 28 закрыты, вентиль 34 находится в открытом состоянии, а вентиль 40 работает так, чтобы были подключены линии 36 (должно быть, 46) и 42. Допуск неочищенного UF6 в реакционный сосуд 12 осуществляется открыванием вентиля 20, при этом газовый поток UF6 от источника 14 втекает по линиям 18, 22 и 24 в реакционный сосуд 12. В реакционном сосуде 12 неочищенный UF6 подвергается облучению лазерными источниками 54, 56 и 58, причем лазерное излучение поступает в сосуд 12 через окно 62 (см. фиг. 4). Комбинация лазерных энергий выбрана таким образом, что каждая из примесей NpF6 и PuF6 в газовом потоке UF6 поглощает два фотона из поля облучения. Указанным образом молекулы NpF6 и PuF6 возбуждаются выше их порогов диссоциации, в результате чего они диссоциируют в нелетучие низшие фториды и атомы фтора. Молекулы UF6 не подвергаются воздействию поля облучения.
Лазерное облучение осуществляется в два этапа. На первом этапе молекулы NpF6 возбуждаются полем лазерного излучения, имеющим энергию 9528 см-1, от фторцирконатного лазера 54 с примесью Nd3+ (или от стеклянного лазера на фториде алюминия с примесью Nd3+), а молекулы PuF6 возбуждаются полем лазерного излучения, имеющим энергию 9583 см-1, от фторберрилятного стеклянного лазера 56 с примесью Nd3+. На втором этапе лазерного облучения молекулы NpF6 и PuF6 облучаются при помощи излучения лазера 58 на парах меди, имеющего энергию 19570 см-1. Лазерное излучение вызывает разложение NpF6 и PuF6 во фториды низкой валентности, которые осаждаются на стенках сосуда 12 в виде нелетучего осадка, и в газ фтор.
Газовый поток UF6, который теперь свободен от примесей NpF6 и PuF6, но содержит газ фтор от фотохимической реакции, подается по линиям 32 и 34 через охлаждаемую ловушку 38, в которой UF6 конденсируется. Фтор, который не конденсируется в охлаждаемой ловушке 38, проходит по линиям 36 и 42 в резервуар 48, в котором осуществляется его накопление. Для удаления очищенного UF6 из охлаждаемой ловушки 38 вентиль 34 закрывается, а вентиль 40 включается таким образом, чтобы подключить линию 36 к линии 44. Охлаждаемая ловушка 38 нагревается до температуры, при которой UF6 становится летучим соединением (ориентировочно до 57oC), и очищенный UF6 собирается в резервуаре 50.
Периодически вентиль 20 перекрывается для прерывания потока неочищенного газа UF6 от источника 14 в реакционный сосуд 12. Очищенный UF6 и фтор удаляются из реакционного сосуда 12 в резервуары 48 и 50 соответственно описанным выше образом. Вентиль 28 открывается и газ фтор поступает в реакционный сосуд 12 от источника фтора 16 по линиям 26, 30 и 24. Реакционный сосуд 12 и его содержимое облучаются от источника ультрафиолетового (УФ) излучения 60, причем УФ излучение проходит в реакционный сосуд 12 через окно 62. В результате этого нелетучие твердые примеси в сосуде 12 фотохимически фторируются в NpF6 и PuF6. Вентиль 40 включается таким образом, чтобы подключить линию 36 к линии 42, а затем открывается вентиль 34. Газы, выходящие из реакционного сосуда 12, по линиям 32 и 36 проходят через охлаждаемую ловушку 38, в которой NpF6 и PuF6 конденсируются. Весь фтор, который не вступал в реакцию, не подвергается конденсации в охлаждаемой ловушке 38 и проходит по линиям 36 и 42 в резервуар 48, в котором он накапливается. Для удаления NpF6 и PuF6 из охлаждаемой ловушки 38 вентиль 34 закрывают, а вентиль 40 переключают так, что он соединяет линии 36 и 46. Охлаждаемая ловушка 38 нагревается до температуры, при которой NpF6 и PuF6 становятся летучими соединениями (ориентировочно до 60oC), и очищенные NpF6 и PuF6 собираются в резервуаре 52.
Для того чтобы осуществлять экономически выгодное удаление примесей из газового потока UF6 с целью получения очищенного UF6 приемлемого качества для использования в газовых диффузионных установках, может оказаться необходимым включать последовательно в каскад несколько описанных выше систем. Каскадирование обеспечивает также дополнительное преимущество, связанное с возможностью отключения из технологического цикла секций полной системы на время технического обслуживания, а также для периодической выгрузки накопленных примесей.
В альтернативном способе очистки UF6 газовые потоки NpF6 и PuF6 могут быть диссоциированы независимо и могут накапливаться в отдельных резервуарах. Несмотря на то что PuF6 может быть фотодиссоциирован в двухфотонном процессе, в соответствии с описанным ранее диссоциация может происходить и более просто с использованием однофотонного процесса.
В соответствии с альтернативным способом молекулы PuF6 в газовом потоке фотодиссоциированы в реакторе с использованием лазерного излучения относительно низкой энергии, когда это облучение не оказывает воздействия на молекулы UF6 и NpF6. После этого нелетучие твердые фтористые продукты могут быть собраны и обработаны соответствующим образом. Газовый поток UF6, содержащий загрязнения NpF6, пропускается во второй реактор, в котором происходит возбуждение и фотодиссоциация с использованием двухфотонного процесса, соответствующего описанному выше. Второй нелетучий твердый фотопродукт собирается и обрабатывается необходимым образом, а очищенный газовый поток UF6 направляется в соответствующий резервуар для накопления.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАБОТКИ ЗАГРЯЗНЕННОГО МАТЕРИАЛА | 1995 |
|
RU2133632C1 |
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ПОВЕРХНОСТНЫХ ДЕФЕКТОВ | 1994 |
|
RU2119657C1 |
СПОСОБ ОЧИСТКИ МАТЕРИАЛА С РАДИОАКТИВНЫМ ЗАГРЯЗНЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2166809C2 |
МЕТАЛЛИЧЕСКАЯ БОЧКА ДЛЯ ИСПОЛЬЗОВАНИЯ В КОНТРОЛИРУЕМОЙ НА РАССТОЯНИИ СРЕДЕ | 1995 |
|
RU2133484C1 |
МАТЕРИАЛЫ И УСТРОЙСТВА, СОДЕРЖАЩИЕ ЛЮМИНОФОРЫ | 1994 |
|
RU2124035C1 |
ИОННЫЕ ЖИДКОСТИ В КАЧЕСТВЕ РАСТВОРИТЕЛЕЙ | 1997 |
|
RU2189654C2 |
МАТЕРИАЛ ДЛЯ ЦЕМЕНТАЦИИ И СПОСОБ ФОРМОВАНИЯ | 1994 |
|
RU2133235C1 |
БИОДАТЧИК ДЛЯ ОБНАРУЖЕНИЯ ИОНОВ НИТРАТА ИЛИ НИТРИТА И СПОСОБ ОПРЕДЕЛЕНИЯ ИОНОВ НИТРАТА И/ИЛИ НИТРИТА | 1995 |
|
RU2149182C1 |
УСОВЕРШЕНСТВОВАНИЯ В ОБЛАСТИ ПЕРЕРАБОТКИ МАТЕРИАЛОВ | 2000 |
|
RU2230130C2 |
СПОСОБ ПОЛУЧЕНИЯ НАСЫЩЕННЫХ ФТОРИДОВ | 1995 |
|
RU2093469C1 |
Cпособ очистки газового потока UF6 предусматривает облучение газового потока UF6 лазерным излучением. Система очистки включает реакционный сосуд. В сосуд подают неочищенный UF6. Реакционный сосуд облучают лазерным излучением с энергией менее 24000 см-1 с помощью генератора. UF6 не диссоциируeт. Примеси переходят в нелетучее состояние. Газы выпускают из реакционного сосуда. Нелетучие примеси, оставшиеся в сосуде, фторируют газообразными фторирующими веществами и выпускают образовавшиеся газы. Примеси - нептуний и плутоний. Фторирующие агенты IF7, BrF3, ClF3. Результат - отсутствие отходов процесса. 2 с. и 22 з.п. ф-лы, 4 ил.
US 4555318 A, 26.11.85 | |||
GB 1526512 A, 27.02.78 | |||
Футеровка канатного барабана | 1985 |
|
SU1306896A1 |
US 3615267 A, 26.10.71 | |||
US 4670239 A, 02.06.87 | |||
0 |
|
SU194295A1 | |
US 4118296 A, 03.10.78 | |||
Химическая технология облученного ядерного горючего | |||
/ Под ред.Шевченко В.Б | |||
- М.: Атомиздат, 1971, с.344 - 345 | |||
Тананаев И.В | |||
и др | |||
Химия фтористых соединений актиноидов | |||
- М.: Изд-во АН СССР, 1963, с.133, 167. |
Авторы
Даты
1999-06-20—Публикация
1994-12-06—Подача