Изобретение относится к области ракетной техники и может быть использовано при нейтрализации ЖРД, работающих на самовоспламеняющихся компонентах топлива, например амил и гептил.
Одной из основных проблем при испытании ЖРД является разработка мероприятий по обеспечению возможности проведения многократных стендовых испытаний двигателей. Для двигателей, работающих на токсичных компонентах топлива, решение этой задачи осложняется неизбежными трудностями, связанными с полнотой удаления из внутренних полостей двигателя остатков компонентов топлива от предыдущего пуска, отрицательно влияющих на повторный пуск.
Известны способы очистки внутренних полостей двигателей от остатков компонентов топлива, заключающиеся в многократной промывке водой или водными растворами химических веществ, обработка паром и последующей их сушке горячим газом.
Известны способы удаления остатков компонентов топлива путем подогрева конструкции двигателя до температуры насыщенных паров компонентов топлива, при которой они интенсивно вскипают, и пары их под действием давления насыщенных паров удаляются из внутренних полостей (Махин В.А. и др. "Динамика ЖРД". изд-во "Машиностроение" 1969 г., 1, стр. 330).
Недостатком этих способов является низкое качество очистки (наличие остатков компонентов топлива в тупиковых полостях) и большая продолжительность процессов очистки.
Наиболее близким к предлагаемому является способ нейтрализации внутренних полостей жидкостно-ракетных двигателей от токсичных компонентов топлива, основанный на удалении компонентов топлива и их паров из полостей двигателей путем продувки полостей и вакуумирования (Жуковский А.Е., Кондрусев В. С. , Окорочков В.В. Испытания жидкостных ракетных двигателей, Машиностроение, 1992, с. 287 - прототип).
Недостатком этого способа является необходимость применения для очистки растворителей и специального оборудования для их хранения и использования.
Задачей настоящего изобретения является эффективное удаление жидкой фазы компонентов топлива и уменьшение загрязнения окружающей среды.
Поставленная задача достигается тем, что технологические операции продувки полостей и вакуумирования чередуют, а полости продувают смесью газообразного азота и паров веществ, вступающих в экзотермическую реакцию с компонентами топлива, до начала уменьшения температуры и увеличения концентрации продувочного газа на выходе из продуваемых полостей в конце продувки по сравнению с параметрами в начале продувки.
При этом концентрацию вещества в продувочном газе выбирают меньше нижнего предела самовоспламенения паров вещества с жидкой фазой компонентов топлива, а в качестве вещества, вступающего в химическую реакцию с компонентами топлива, используют для продувки линии O-пары гептила, для продувки линии Г-пары амила.
В процессе продувки линии Г-парами амила находящийся в тупиковых местах гептил вступает в химическую реакцию с парами амила, о чем свидетельствует изменение температуры и концентрации продувочного газа на выходе из продуваемых полостей.
Ввиду того, что химическая реакция проходит с выделением тепла, возможно увеличение температуры не только продувочного газа, но и конструкции двигателя. Это позволит уменьшить затраты на подогрев конструкции двигателя.
На чертеже изображена схема устройства для осуществления способа: 1 - пневмопульт; 2, 4, 5, 6, 7, 9 и 11 - запорные вентили; 3 - рессивер; 8 - емкость с гептилом; 10 - емкость с амилом; 12 - двигатель с линией "Г" и "О"; 13, 18 - приборы для фиксации температуры; 14, 16 - термопары; 15, 17 - газоанализаторы гептила и амила; 19 - камера испарения.
Устройство содержит пневмопульт, 1 соединенный запорным вентилем 2 и с рессивером 3; камеру испарения 19, в которой расположены рессивер 3, запорные вентили 4, 5, 6, 7, 9 и 11 и емкость с гептилом и амилом. Выход линии "О" двигателя соединен с рессивером 3 и емкостью с гептилом 8 через запорные вентили 4 и 9, а вход линии "Г" двигателя соединен с рессивером 3 и емкостью с амилом 10 через запорные вентили 7 и 11. Выход линии "О" двигателя сообщается с термопарой 14 и газоанализатором гептила 15, термопара 14 соединена с прибором для фиксации температуры 13.
Выход линии "Г" сообщается с термопарой 16 и газоанализатором амила 17, термопара 16 соединена с прибором для фиксации температуры 18.
Способ нейтрализации осуществляется следующим образом. Емкость 8 заполняют гептилом, а емкость 10 - амилом. Заполнение емкостей проводят на 3/4 объема. Выводят на температурный режим двигателя 12 и камеру испарителя 19. После нагрева двигателя и установления в камере испарителя необходимой температуры в рессивер 3 подают газообразный азот. Для продувки, например, линии "О" двигателя вентилями 4, 5 и 9 создают необходимую концентрацию гептила в продувочном газе и с помощью термопары 14 и газоанализатора 15 в начале продувки замеряют значение температуры и концентрации. Температура должна быть выше температуры продувочного газа на входе в продуваемую полость, а концентрация - ниже. Производят продувку в течение времени, необходимом для удаления жидкой фазы амила, которое определяется по понижению температуры и повышению концентрации продувочного газа на выходе из продуваемых полостей по сравнению с этими параметрами в начале продувки. Аналогично проводится нейтрализация линии "Г" двигателя. При этом концентрация амила в продувочном газе не должна превышать 350 мг/л, а концентрация гептила не должна превышать 350 мг/л при температуре 20oC.
После удаления из полостей двигателя жидкой фазы компонентов топлива проводят окончательную нейтрализацию температурно-вакуумным методом.
Экономическая эффективность предлагаемого способа состоит в том, что он не требует применения для нейтрализации различных технологических жидкостей, которые в отдельных случаях сами отрицательно влияют на работоспособность двигателя. Кроме этого, учитывая, что часть компонента вступает в химическую реакцию и нейтрализуется, то это уменьшает вероятность попадания компонента топлива в окружающую среду.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПРОДУВКИ ГОЛОВКИ ГАЗОГЕНЕРАТОРА ЖРД | 1984 |
|
RU2083862C1 |
СПОСОБ ОЧИСТКИ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ ОБОРУДОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2209853C2 |
СПОСОБ ОГНЕВЫХ КОНТРОЛЬНО-ТЕХНОЛОГИЧЕСКИХ ИСПЫТАНИЙ ЖРД | 2000 |
|
RU2193681C2 |
УСТАНОВКА ОЗОНИРОВАНИЯ ВОДЫ | 1995 |
|
RU2091328C1 |
ЭКСПЕРИМЕНТАЛЬНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ДОЖИГАНИЕМ | 1994 |
|
RU2065068C1 |
КОТЕЛЬНАЯ УСТАНОВКА | 1996 |
|
RU2117859C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2176744C2 |
СПОСОБ ИЗМЕНЕНИЯ РЕЖИМА РАБОТЫ ЖРД И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА | 1998 |
|
RU2125177C1 |
СТЕНД ДЛЯ ИСПЫТАНИЙ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ | 1996 |
|
RU2111373C1 |
ГАЗОВЫЙ ТРАКТ ЖРД | 2015 |
|
RU2579296C1 |
Способ предназначен для нейтрализации остатков высокотоксичных компонентов топлива, отрицательно влияющих на повторный пуск жидкостных ракетных двигателей. Нейтрализация осуществляется путем чередования технологических операций продувки и вакуумирования. Полости продувают смесью газообразного азота и паров веществ, вступающих в экзотермическую реакцию с компонентами топлива, до начала уменьшения температуры и увеличения концентрации продувочного газа на выходе из продуваемых полостей в конце продувки по сравнению с параметрами в начале продувки. При этом в качестве вещества, вступающего в химическую реакцию с компонентами топлива, используют для продувки линии О-пары гептила, для продувки линии Г-пары амила. Концентрацию вещества в продувочном газе выбирают меньше нижнего предела самовоспламенения паров вещества с жидкой фазой компонентов топлива. Способ не требует для нейтрализации различных технологических жидкостей, которые в отдельных случаях сами отрицательно влияют на работоспособность двигателя. Кроме этого, применение этого способа позволяет уменьшить вероятность попадания компонентов топлива в окружающую среду. 2 з. п. ф-лы, 1 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Жуковский А.Е | |||
Кондрусев В.С., Окорочков В.В., Испытания жидкостных ракетных двигателей | |||
- М.: Машиностроение, 1992, с | |||
СПОСОБ ИЗГОТОВЛЕНИЯ ЧЕРТЕЖЕЙ ДЛЯ ОДНООБРАЗНОЙ РАСКРОЙКИ ПРЕДМЕТОВ ОДЕЖДЫ | 1919 |
|
SU287A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
RU 2056397 C1, 20.03.96 | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
СПОСОБ ОЧИСТКИ ТОПЛИВНЫХ БАКОВ РАКЕТЫ ОТ ОСТАТКОВ ГОРЮЧЕГО НЕСИММЕТРИЧНОГО ДИМЕТИЛГИДРАЗИНА | 1992 |
|
RU2046124C1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Махин В.А | |||
и др | |||
Динамика ЖРД | |||
- М.: Машиностроение, 1969, 1, п | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Катодная трубка Брауна | 1922 |
|
SU330A1 |
Авторы
Даты
1999-07-27—Публикация
1997-11-04—Подача