Изобретение относится к области физики взаимодействия тонких энергий, в частности технологии и техники создания микролептонного излучения и обработки им веществ и материалов.
Уровень техники.
Аналогов заявляемого способа генерации микролептонного излучения и его воздействия на вещества и материалы заявителем не обнаружено. В качестве аналога устройства для генерации микролептонного излучения выбрана конструкция пневмопривода, содержащая корпус, состоящий из двух цилиндров, опору с подшипником и уплотнительными кольцами и каналы, подводящий и отводящий рабочий агент /см. , например, книгу О.А.Беликов и Л.П. Каширцев. Приводы литейных машин, Издательство "Машиностроение", М.,1971 г., с.155 - 156, Рис.92а./
Сущность изобретений.
Способ генерации микролептонного излучения и его воздействие на вещества и материалы включает создание механическим путем в замкнутом объеме потока рабочего агента. Способ отличается тем, что с помощью дроссельного генератора создают кавитационный поток рабочего агента, на который накладывают вибрационное и ультразвуковое, и/или электронное /электромагнитное/ поля, обеспечивающие возникновение возбужденного микролептонного поля, взаимодействие микролептонов которого синтезирует микролептоны в кластеры с выделением или поглощением энергии. Изменение состояния кластеров обеспечивает взаимную индукцию микролептонных, электрических и магнитных полей. Возбужденными микролептонами воздействуют на обрабатываемые вещества и материалы и обеспечивают возникновение в них продольных волн со скоростью 15-20 км/с и большой глубиной проникновения, изменяющие физико-химические свойства веществ и материалов.
Устройство для генерации микролептонного излучения содержит корпус, состоящий из двух цилиндров, опору с подшипником и уплотнительными кольцами, каналы, подводящий и отводящий рабочий агент. Устройство отличается тем, что снабжено генератором ультразвуковых колебаний /ГУЗ/, дроссельным генератором и мембраной. Генератор ультразвуковых колебаний выполнен в виде вращаемого ротора, закрепленного на валу, и двух сепараторов, расположенных с двух сторон ротора, сепараторы неподвижно установлены в обойме и ротор и сепараторы выполнены с калиброванными отверстиями. Дроссельный генератор расположен между ГУЗ и мембраной и выполнен в виде неподвижного диска из полимера с центральным калиброванным отверстием. Между ГУЗ и дроссельным генератором расположена пузырьковая полость. Полость между дроссельным генератором и мембраной, укрепленной в торце корпуса, снабжена каналом для возврата рабочего агента. Внутренняя цилиндрическая поверхность корпуса выполнена изолированной от рабочего агента и покрыта полимером. Корпус выполнен из коаксиально расположенных цилиндров.
Изобретения поясняются чертежами, где на:
фиг.1 - представлен генератор микролептонного излучения;
фиг.2 - блок-схема генератора микролептонного излучения;
фиг.3 - функциональная схема генератора микролептонного излучения;
фиг.4 - установка для обработки нефти.
По изобретениям - возникновение энергии осуществляется посредством движения перемещающихся относительно друг друга жидких, газообразных, паровых или других фрагментов /рабочих агентов/.
Практическая реализация изобретений выявила, что в жидкости, продавливаемой через отверстия сепараторов и ротора генератора ультразвуковых колебаний /ГУЗ/, а также через зазоры между ними, возникает множество кавитационных пузырьков, нарушается сплошность /однородная структура/ внутри жидкости по причине образования полостей, заполненных газом, паром, или смесью. Пузырьки /каверны/ "схлопываются" после прохождения через жиклер, установленный в диске дроссельного генератора микролептонного и кавитационного потоков /ДГМИ/. Вязкость рабочего агента значительно снижается, он становится сверхтекучим, резко повышаются давление и температура.
Рабочий агент, воздействуя на мембрану, вызывает ее вибрацию, что также способствует возникновению микролептонного поля. Таким образом, генерация и распределение микролептонного поля возможны созданием ультразвуковым, кавитационным, механическим и электронными способами.
Изобретение может использоваться для воздействия на объекты /вещества и материалы/ микролептонным полем, т.е. для предварительного возбуждения с целью изменения физико-химических свойств, в частности нефти, затрачивая при этом незначительное количество энергии.
Для выполнения этого аспекта изобретения предусматривается использовать основополагающий принцип действия: создать предварительное возбуждение делящегося микролептонного материала в составе углеводородов. Все вещественные объекты имеют собственные энергетические оболочки и помимо общеназванных молекулярных, кристаллических и прочих структур, являющиеся неотъемлемой их частью, в них присутствует микролептонный делящийся материал.
В составе нефти и ее производных микролептонный делящийся материал также имеется в виде особых формирований из тяжелых и легких микролептонов. Такие формирования индуцированно распадаются под воздействием резонансных полей /микролептонных полей/, создаваемых генератором микролептонного излучения, при этом увеличивается полное энергосодержание углеводородов от десятков % до нескольких раз. В то же время при этом возможен и синтез микролептонов вследствие взаимодействия микролептонов, заряженных разноименными несохраняющимися зарядами, объединенными в кластеры. Взаимодействие кластеров приводит к условиям слияний легких микролептонов в более тяжелые с выделением или поглощением энергии, что подтверждается практическими испытаниями с тяжелой нефтью.
Возбужденные микролептоны образуют пространственные структуры - макрокластеры, которые имеют шаровую конфигурацию. Изменение состояний кластеров индуцирует микролептонные, электрические и магнитные поля, точнее происходит взаимная индукция электромагнитным лептонного и лептонным электромагнитного поля. Вокруг этих кластеров возникает состояние, близкое к сверхтекучести и его кластерные структуры находятся в постоянном движении. Возбужденные микролептоны взаимодействуют со свободными и связанными электронами и нуклонами вещества, что приводит к изменению его электромагнитных и механических характеристик /диэлектрической и магнитной проницаемости, прочности, вязкости и др. / В возбужденном веществе возникают продольные волны со скоростью 15-20 км/с и с большой глубиной проникновения, что и позволяет изменять физико-химические свойства углеводородов.
Генератор ультразвуковых колебаний /ГУЗ/ и дроссельный генератор микролептонного и кавитационного потоков /ДГМИ/ являются составляющими узлами генератора микролептонных излучении /ГМИ/. Корпус ГМИ выполнен из двух коаксиально расположенных цилиндров 1 и 2 /см. фиг. 1/, со стороны насоса /на чертежах не показан/ корпус закрыт опорой 3, связанной резьбовым соединением с внутренним цилиндром 1. В опоре 3 расположены подшипник 4, уплотнительные кольца 5 и 6, а также каналы для подачи рабочего агента, связанные с аналогичными каналами в корпусе. С противоположной стороны от опоры 3 установлена мембрана 7. Перед генератором ультразвуковых колебаний /ГУЗ/ располагается полость предварительного сжатия 8, ГУЗ состоит из вращаемого ротора 9, закрепленного с помощью шпонки на валу 10, двух сепараторов 11, расположенных по обе стороны от ротора 9 на расстоянии 0,1 - 0,47 мм. Сепараторы неподвижно установлены в обойме 12, ступица 13 ротора 9 вращается во втулках 14, которые установлены в сепараторах 11. Ротор 9 и сепараторы 11 выполнены с калиброванными отверстиями 15. Перед ДГМИ располагается пузырьковая полость 16. ДГМИ представляет собой диск 17, изготовленный из полимера, а в диске соосно центральной оси установлен жиклер 18. За ДГМИ расположена полость 19, предназначенная для взаимодействия рабочего агента и мембраны. Стенки полостей пузырьковой 16 и полости 19 изолированы полимерным материалом 20.
Рабочий агент под давлением, создаваемым насосом, поступает в полость предварительного сжатия 8 перед генератором ультразвуковых колебаний. Проходя через отверстия 15 сепараторов 11 и вращаемого ротора 9, рабочий агент насыщается кавитационными пузырьками /кавернами/. Пузырьки попадают в область давления P<Pкр, сильно расширяются в результате того, что давление содержащегося в них пара и газа оказывается больше, чем давление в жидкости. В результате на участке потока с пониженным давлением /перед жиклером/ создается довольно четко ограниченная "кавитационная зона" /поле/, заполненная движущимися пузырьками.
После перехода в зону повышенного давления рост пузырьков прекращается, он начинает сокращаться и "схлопываться". Сокращение кавитационного пузырька происходит с большой скоростью и сопровождается звуковым импульсом /своего рода гидравлическим ударом/ тем более сильным, чем меньше газа содержит пузырек. В результате чего возникает вибрация мембраны и соответственно вибрационное поле. Наложение на кавитационный поток вибрационного поля обеспечивает возникновение микролептонного поля, что вызывает предварительное возбуждение делящегося микролептонного материала /тяжелых и легких микролептонов/ в составе углеводородов.
Возникновение микролептонного поля основано на кавитационных процессах, происходящих в ГМИ. Рабочая жидкость под давлением 0,60 МПа, создаваемым первоначально насосом, проходит через отверстия в первом сепараторе, затем в роторе и втором сепараторе ГУЗ. При этом струя жидкости разрывается и при входе в дроссельный генератор микролептонного и кавитационного потоков /ДГМИ/ возникает множество пузырьков. Так образуется кавитация. Вязкость рабочего агента значительно снижается /он становится сверхтекучим/, повышаются его давление и температура. Рабочий агент, ударяясь в мембрану, вызывает ее вибрацию, после чего поступает во всасывающую полость насоса /на чертежах не показан/. Частота колебаний мембраны должна быть в пределах 25-39 Герц. Микролептонное поле суммируется с вибрационным потоком, что значительно его усиливает и увеличивает радиус обработки. Время, необходимое для обработки пласта, может быть различным в пределах от 0,5 до 3,0 часов и зависит от следующих основных факторов: размеров месторождения, глубины залегания, температуры нефти вблизи скважины, химического состава, обводненности пласта, наличия твердых примесей и породы.
Основным параметром является вязкость нефти. Чем выше вязкость, тем длительнее время обработки. Для снижения вязкости возможно применение метода циклической обработки пласта, заключающегося в неоднократном включении в работу генератора с перерывами между включениями. В нефти после обработки ГМИ сохраняется с незначительными изменениями вязкость и другие свойства до трех месяцев. Для поддержания этих свойств более длительное время необходима периодическая обработка нефтяного пласта ГМИ.
Технические данные установки для обработки нефти /см. фиг.4/
Электродвигатель:
- мощность, КВт 3,0;
- частота вращения, об/мин 3000;
Насос:
- тип - центробежный или вихревой, погружной;
- создаваемое давление, МПа 0,60
Габаритные размеры, мм:
- общая длина 2500;
- диаметр 117;
- ширина /с учетом такелажного устройства/ 130;
- общая масса, кг 170.
Затраты энергии на обработку одной скважины при однократной обработке с максимально допустимым временем составляет не более 50 КВт/час. Обеспечивается снижение вязкости нефти до 30%.
В качестве рабочего агента, в зависимости от условий эксплуатации и необходимых параметров работы, применяются:
- дистиллят воды с солями лития и 1% тяжелой воды;
- вязкие нефтепродукты /дизельное топливо, керосин, трансформаторное или веретенное масла/;
- охлаждающие низкозамерзающие жидкости /антифриз, "тосол"/.
Достигаемый изобретениями технический результат заключается в изменении физико-химических свойств, обрабатываемых веществ и материалов, в стимулировании производительности нефтяных скважин и уменьшении энергозатрат на добычу нефти.
Использование: в области физики взаимодействия тонких энергий при создании микролептонного излучения и обработки им веществ и материалов для изменения их физико-химических свойств, стимулирования производительности нефтяных скважин и уменьшения энергозатрат на добычу нефти. Сущность изобретения: создают в замкнутом объеме с помощью дроссельного генератора кавитационный поток рабочего агента, на который накладывают вибрационное и ультразвуковое и/или электронное/электромагнитное поля. обеспечивающие возникновение возбужденного микролептонного поля. Возбужденными микролептонами воздействуют на обрабатываемые вещества и материалы, обеспечивая возникновение в них продольных волн со скоростью 15 - 20 км/ч. Устройство снабжено генератором ультразвуковых колебаний, выполненным в виде вращаемого ротора, закрепленного на валу, и двух сепараторов, неподвижно установленных в обойме, дроссельным генератором, выполненным в виде неподвижного диска из полимера с центральным калиброванным отверстием и мембраной. 2 с. и 1 з.п.ф-лы, 4 ил.
0 |
|
SU161088A1 | |
КВАНТОВОМЕХАНИЧЕСКИЙ ГЕНЕРАТОР ИЗЛУЧЕНИЯ НА ПУЧКЕ АТОМОВ | 1964 |
|
SU247410A1 |
Охатрин А.Ф | |||
Макрокластеры и сверхлегкие частицы - Доклады АН СССР, 1989, т.304, N 4, с.866 - 869 | |||
Ковалев Р.П | |||
Микролептонные технологии - в практику конструирования - Самолет, 1997, N 1, с.20 - 23. |
Авторы
Даты
1999-08-27—Публикация
1997-09-19—Подача