Изобретение относится к технологии обогрева поверхностей теплообмена трубчатых печей, котлов паровых и для теплоносителей и может быть использовано в химической, энергетической, теплоэнергетической промышленности.
Известны способы обогрева поверхностей теплообмена, в частности промышленных трубчатых печей, которые состоят из радиационной и конвекционной камер, осуществляются с помощью излучения от горелок, расположенных на наружных панелях радиационной камеры. Процесс в любых конструкциях горелок происходит за счет смешения воздуха и топливного газа и их сжигания непосредственно на выходе из горелок (Рентус Н., Шарихин В.В. Трубчатые печи в нефтеперерабатывающей и нефтехимической промышленности. - М.: Химия, 1987, 17-39, авт.св. СССР N 1214724, 1986).
К недостаткам известных способов обогрева трубчатых печей с помощью горелок относится неравномерность обогрева поверхности теплообмена, приводящая к местным перегревам, науглероживанию, ускоренному закоксованию поверхностей теплообмена и их коррозии; высокая температура факела горелки, разрушающая футеровку прилегающей поверхности и собственно горелку.
Цель изобретения - повышение эффективности работы теплообменных поверхностей оборудования, увеличение их межремонтного пробега и улучшение безопасности работы.
Цель достигается тем, что топливо (газ, пары органического топлива, жидкое топливо, пылеобразное твердое топливо) и окислитель (воздух, дымовые газы, выхлопы газовых турбин) подают в радиационную камеру таким образом, что окислитель с содержанием кислорода более 3 об.% входит в радиационную камеру отдельно, а топливо дозируют по ходу движения окислителя в соответствии с необходимым температурным профилем поверхностей теплообмена.
При этом сгорание топлива происходит во всем объеме потока, создавая условия радиационно-конвекционного обогрева одновременно.
На чертеже, отражающем продольный разрез части радиационной камеры трубчатой печи, показана принципиальная схема ее обогрева.
Радиационно-конвекционный обогрев трубчатой печи в нашем примере производится сжиганием топлива, в качестве которого используется топливный газ, в потоке окислителя - выхлопов газовых турбин с содержанием кислорода более 3 об.%. При этом топливо и окислитель в трубчатую печь подаются раздельно.
Воспламенение топлива производится запальными горелками или самовоспламенением при высокой температуре окислителя, или другими известными способами.
Окислитель движется вдоль поверхностей теплообмена, в нашем случае змеевиков 2 трубчатой печи, направляемый топливными камерами 3 с топливом, размещенными параллельно змеевикам 2.
В топливные камеры 3, перфорированные отверстиями 4 для выхода топлива, оно подается в количестве, соответствующем расчетному температурному профилю поверхностей теплообмена.
Выходящее из камер 3 топливо перемешивается во всем объеме движущегося потока окислителя и сгорает с образованием объемного радиационного излучения. Движущийся поток окислителя в смеси с продуктами сгорания топлива обеспечивает дополнительно конвекционный режим обогрева всей поверхности теплообмена - змеевиков 2. При движении окислителя содержание кислорода постепенно падает от исходных более 3 об.% до минимально необходимых 0,1%, чтобы содержание оксида углерода CO не превышало допустимых санитарных норм.
Сочетание радиационного и конвекционного способов обогрева поверхностей теплообмена камеры трубчатой печи позволяет увеличить коэффициент теплопередачи, а следовательно, снизить температуру газового потока продуктов сгорания с обычных 1500 - 1600oC до 1240 - 1280oC и при этом сохранить температуру стенки последних участков змеевика на уровне 940 - 980oC.
Равномерное одновременное сгорание топлива и омывание продуктами сгорания поверхностей теплообмена различного типа оборудования при радиационно-конвекционном способе обогрева снижает локальные перегревы, коксообразование, науглероживание и коррозию поверхностей теплообмена, увеличивает межремонтный пробег оборудования в 3-4 раза. Повышается безопасность работы оборудования за счет его герметизации, которая достигается отсутствием подсоса окислителя к радиационным камерам из окружающего пространства.
название | год | авторы | номер документа |
---|---|---|---|
РАДИАЦИОННО-КОНВЕКЦИОННЫЙ СПОСОБ ОБОГРЕВА ТРУБЧАТОЙ ПЕЧИ | 1996 |
|
RU2120463C1 |
ТРУБЧАТАЯ ПЕЧЬ | 1996 |
|
RU2130477C1 |
СПОСОБ СЖИГАНИЯ ТОПЛИВА В НАГРЕВАТЕЛЬНОЙ ПЕЧИ И НАГРЕВАТЕЛЬНАЯ ПЕЧЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2309991C2 |
СИСТЕМА ПЕЧИ ДЛЯ КРЕКИНГА И СПОСОБ КРЕКИНГА УГЛЕВОДОРОДНОГО СЫРЬЯ В НЕЙ | 2018 |
|
RU2764677C2 |
Печь | 1979 |
|
SU872926A1 |
СПОСОБ СНИЖЕНИЯ ОТЛОЖЕНИЯ КОКСА В СЫРЬЕВЫХ ЗМЕЕВИКАХ ТРУБЧАТЫХ ПЕЧЕЙ И УСТРОЙСТВО ДЛЯ СНИЖЕНИЯ КОКСООТЛОЖЕНИЯ | 1995 |
|
RU2089783C1 |
ПИРОЛИЗНАЯ ПЕЧЬ | 2010 |
|
RU2441053C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБОГРЕВА ТРУБОПРОВОДА ПОПУТНЫМ НЕФТЯНЫМ ГАЗОМ | 2022 |
|
RU2808323C1 |
СПОСОБ ЗАМЕДЛЕННОГО КОКСОВАНИЯ | 2011 |
|
RU2568713C2 |
ГОРЕЛКА И СПОСОБ РАБОТЫ ГОРЕЛКИ (ВАРИАНТЫ) | 2008 |
|
RU2381417C1 |
Способ предназначен для применения в химической, энергетической и теплоэнергетической промышленности. Способ включает подачу топлива и окислителя в радиационную камеру таким образом, что окислитель с содержанием кислорода более 3 об.% входит в радиационную зону отдельно, а топливо дозируют по ходу движения окислителя в соответствии с необходимым температурным профилем поверхностей теплообмена, создавая условия радиационно-конвекционного обогрева одновременно. Техническим результатом изобретения является увеличение межремонтного пробега теплообменных поверхностей и повышение их эффективности работы. 1 ил.
Радиационно-конвекционный способ обогрева поверхностей теплообмена путем сжигания топлива в потоке окислителя, отличающийся тем, что топливо и окислитель подают в радиационную камеру таким образом, что окислитель с содержанием кислорода более 3 об. % входит в радиационную камеру отдельно, а топливо дозируют по ходу движения окислителя в соответствии с необходимым температурным профилем поверхностей теплообмена, создавая условия радиационно-конвекционного обогрева одновременно.
Трубчатая печь | 1984 |
|
SU1214724A1 |
Газовая горелка | 1987 |
|
SU1539461A1 |
Трубчатая вертикальная печь | 1987 |
|
SU1467347A1 |
Трубчатая печь | 1985 |
|
SU1560546A1 |
Авторы
Даты
1999-08-27—Публикация
1997-11-17—Подача