МНОГОФУНКЦИОНАЛЬНЫЙ РАДИОВИЗОР Российский патент 1999 года по МПК G01N22/00 G01R29/08 G01S13/95 

Описание патента на изобретение RU2139522C1

Изобретение относится к радиоэлектронике и может использоваться в измерительных комплексах, а именно для исследования структуры объектов и измерения электромагнитных излучений от исследуемых объектов.

Наиболее близким к изобретению является радиосистема (радиовизор) передачи и обработки информации, поступающей от исследуемого объекта (Конструкции СВЧ-устройств и экранов / под ред. А.М. Чернушенко. М.: Радио и связь. 1983, с.5-7), содержащая передающий канал, включающий в себя задающий генератор, усилитель, излучающую антенну и приемный канал, включающий в себя переключатель, смеситель, усилитель низкой частоты (УНЧ), усилитель промежуточной частоты (УПЧ), квадратичный детектор, приемную антенну, вход передающего и выход приемного каналов соединены через элементы связи с ЭВМ, исследуемый объект расположен между излучающей и приемной антеннами. В основе измерения используется радиометрический метод. Недостатком этой радиосистемы является низкая точность и чувствительность измерения, что связано с обработкой амплитудного параметра информационного сигнала.

Технический результат достигается за счет увеличения разрешающей способности и чувствительности при измерениях параметров исследуемого объекта, обладающего электромагнитным и тепловым излучением, а также повышением функциональных возможностей, позволяющих проводить измерения от микрообъектов до мегаобъектов.

Для этого предложен многофункциональный радиовизор, содержащий передающий канал, включающий задающий генератор, усилитель и излучающую антенну, и приемный канал, включающий смеситель, переключатель, усилитель низкой частоты, квадратичный детектор и приемную антенну, приемный и передающий каналы соединены через элементы связи с ЭВМ, введены дополнительные приемные каналы и дополнительная антенна, передающий канал содержит генератор подсветки, выход которого соединен с излучающей антенной, а к входам подключены контроллер, блок синхронизации по сверхвысокой частоте (СВЧ) и задающий генератор, вход контроллера соединен через элементы связи с ЭВМ, а выходы подключены к входу задающего генератора, блока синхронизации по СВЧ, гетеродину и шине управления по низкой частоте (НЧ) соответственно, выходы блока синхронизации по СВЧ соединены с другим входом задающего генератора и выходом усилителя соответственно, другой выход задающего генератора подключен к последовательно соединенным гетеродину, усилителю и многоканальному делителю мощности, каждый приемный канал содержит переключатель, соединенный с приемной антенной, источником шумового сигнала и вторым входом смесителя, первый вход которого соединен с многоканальным делителем мощности передающего канала, первую цепочку, состоящую из последовательно соединенных усилителя промежуточной частоты, квадратичного детектора и первого синхронного детектора, вторую цепочку, состоящую из последовательно соединенных усилителя по НЧ и второго синхронного детектора, аналого-цифровой преобразователь, входы которого подключены через первую и вторую цепочку к выходу смесителя, а выход через элементы связи подключен к ЭВМ, блок синхронизации по НЧ, выходы которого соединены с переключателем, входом первого и второго синхронного детектора, а вход через шины управления по НЧ соединен с контроллером передающего канала, причем приемные антенны выполнены в виде моноблока, расположенного в фокусе дополнительной антенны. Дополнительная антенна может быть выполнена в виде зеркальной антенны или в виде линзы.

Делитель мощности и приемные антенны могут быть выполнены в виде квадратных матриц. Поверхность зеркальной антенны может быть выполнена в виде эллипсоида, а моноблок приемных антенн расположен в одном из фокусов эллипсоидной зеркальной антенны для исследования макрообъектов. Поверхность зеркальной антенны может быть выполнена в виде параболоида, а генератор подсветки в виде мазера для исследования мегаобъектов. Генератор подсветки может быть выполнен в виде лазера, для исследования микрообъектов.

Существенным отличием многофункционального радиовизора является объединение введенных дополнительных приемных каналов и зеркальной антенны с передающим каналом. Это позволяет проводить одновременную обработку информационного сигнала по амплитуде, фазе и частоте, что дает полную голографическую информацию об исследуемом объекте в частотном диапазоне.

На фиг.1 изображена структурная схема многофункционального радиовизора. На фиг. 2 изображена структурная схема одного приемного канала многофункционального радиовизора.

Многофункциональный радиовизор содержит передающий и приемные каналы, передающий канал включает в себя генератор подсветки 1, выход которого соединен с излучающей антенной 2 (входы и выходы на структурных схемах фиг.1 и 2 указаны стрелками), а выходы, соответственно, соединены с контроллером 3, блоком синхронизации по СВЧ 4 и задающим генератором 5. Входы контроллера 3 через элементы связи 6 соединены с ЭВМ, а выходы подключены соответственно к задающему генератору 5, блоку синхронизации по СВЧ 4 и гетеродину 7. В свою очередь выходы блока синхронизации по СВЧ 4 соединены соответственно с задающим генератором 5, гетеродином 7 и усилителем 8, а задающий генератор 5, гетеродин 7 и усилитель 8 последовательно соединены, причем выход усилителя 8 через многоканальный делитель мощности 9 соединен с первым входом смесителя 10 каждого приемного канала. Каждый приемный канал содержит переключатель 11, соединенный с приемной антенной 12, источником шумового сигнала 13 и вторым входом смесителя 10, выход которого соединен через две цепочки со входами аналого-цифрового преобразователя 14, причем первая цепочка состоит из последовательно соединенных усилителя промежуточной частоты 15, квадратичного детектора 16 и первого синхронного детектора 17, а вторая цепочка состоит из последовательно соединенных усилителя по НЧ и второго синхронного детектора 19. Выходы блока синхронизации по НЧ 20 соединены, соответственно, с переключателем 10, входом первого и второго синхронного детектора 17 и 19, а вход через шину управления по НЧ 21 соединен с контроллером 3 передающего канала, при этом выходы каждого приемного канала через аналого-цифровой преобразователь 14 и элементы связи 22 подключены к ЭВМ. Приемные антенны 12 выполнены в виде моноблока 23, расположенного в фокусе дополнительной антенны 24, которая направлена одновременно с излучающей антенной 2 в сторону исследуемого объекта 25.

Многофункциональный радиовизор работает следующим образом.

Радиовизор работает в трех режимах. Первый режим - тепловой. В этом режиме генератор подсветки 1 отключен (ωn= 0). Приемные антенны 12 принимают собственное тепловое излучение исследуемого объекта 25, которое подается на переключатель 11 совместно с излучением от источника шумового сигнала 13. При этом сигналы излучения и источника шума через переключатель 11, управляемый блоком синхронизации по НЧ 20, попеременно поступают на вход смесителя 10, с выхода которого сигнал с широким спектром распределяется между первой и второй цепочками. При этом первая цепочка выделяет высокие частоты с помощью усилителя промежуточной частоты 15, на входе которого сигнал детектируется квадратичным детектором 16 и через первый синхронный детектор 17 поступает на вход аналого-цифрового преобразователя 14, а вторая цепочка выделяет низкие частоты с помощью усилителя по НЧ 18, с выхода которого сигнал через второй синхронный детектор 19 поступает также на вход аналого-цифрового преобразователя 14. Синхронные детекторы 17 и 19 управляются от блока синхронизации по НЧ таким образом, чтобы на их выходах сигналы были бы калиброваны относительно сигнала источника шума 13. В этом режиме осуществляется сравнение мощности принимаемого излучения с мощностью излучения источника шумовых сигналов за счет амплитудной модуляции на переключателе 11, что позволяет получить на входе аналого-цифрового преобразователя их разницу.

Второй режим радиовизора - рассеяния. В этом режиме измеряют коэффициент отражения электромагнитной волны от поверхности исследуемого объекта. Генератор подсветки 1 при этом включен (ωn≠ 0), а передающая антенна 2 излучает квазишумовой сигнал, несинхронный с частотой ωr гетеродина 7 (ωn≠ ωr). Подсветка дает дополнительную информацию о рассеянии электромагнитных волн на поверхности исследуемого объекта в виде фокальный пятен. Здесь могут быть два случая.

В первом случае осуществляют прием теплового и отраженного излучения с фокальных пятен исследуемого объекта (принцип работы модуляционного радиометра).

Для исключения при измерениях тепловой мощности излучения исследуемого объекта во втором случае модуляция сигнала осуществляется в генераторе подсветки 1 через контроллер 3, управляемый блоком синхронизации по СВЧ 4. Источник шумовых сигналов 13 при этом отключен. В результате получаем на выходе первого синхронного детектора разность между собственным тепловым излучением Т и суммой собственного теплового излучения с мощностью P генератора подсветки 1, отраженной от исследуемого объекта (Т + P), что в конечном итоге на выходе аналого-цифрового преобразователя 14 будем иметь только мощность P = - [Т - (Т + P)] электромагнитной волны, отраженной от исследуемого объекта.

Третий режим радиовизора - голографический. С помощью задающего генератора 5 осуществляют синхронизацию генератора подсветки 1 с гетеродином 7 (ωn= ωr). Это дает возможность проводить, измерения абсолютного значения амплитуды и фазы входного сигнала приемного канала на трех независимых частотах ωrr+Δω, ωr-Δω, где Δω/ωr≪ 1. В этом случае амплитуду определяет коэффициент отражения электромагнитной волны, а фазу - расстояние от исследуемого объекта 25 до приемной антенны 23, но в определении фазы возникает неоднозначность, поскольку это расстояние намного больше длины волны λ. Измерение на трех частотах позволяет устранить неоднозначность в определении сдвига фазы Δϕ принимаемого сигнала, чувствительность при этом пропорциональна λ•Δϕa/120°, где Δϕa< 1° - аппаратурная ошибка измерения фазы. Таким образом, значение амплитуды входного сигнала приемного канала совпадает с амплитудой излучения в режиме рассеяния, а значение сдвига фаз дает информацию о расстоянии, что позволяет настроить объемное изображение исследуемого объекта. Полученная информация является более полной, чем классическая голограмма, поскольку появляется стереоскопичность как дополнительная функция радиовизора.

В заявленном радиовизоре управление тремя режимами осуществляется ЭВМ через элементы связи 6 с контроллером 3. Стабилизацию рабочего сигнала обеспечивает блок синхронизации по СВЧ 4, а оптимальное выделение информационного сигнала из шума - блок синхронизации по НЧ 21. В голографическом режиме смеситель 10 работает в качестве фазометра и осуществляет векторное произведение сигнала гетеродина ωr на входной сигнал, а в тепловом режиме и режиме рассеяния на выходе смесителя 10 будет их скалярное произведение. Радиовизор при объединении полученной информации со всех трех режимов работы позволяет наблюдать как внешние (голографический портрет), так и внутренние (тепло и рассеяние электромагнитного поля) свойства исследуемого объекта.

Для реализации абсолютной калибровки принимаемого сигнала необходимо термостатирование источника шумового сигнала 13 так, чтобы его оптимальная температура совпадала со средней температурой исследуемого объекта (реально это согласованная нагрузка в управляемом термостате), а для увеличения точности и чувствительности измерения радиовизора желательно охлаждение высокочастотных блоков, включающих переключатель 11, смеситель 10 и усилитель промежуточной частоты 15 совместно с источником шумового сигнала 13. Выполнение приемной части многоканальной позволяет увеличить разрешающую способность радиовизора (увеличение числа каналов пропорционально контрастности изображения исследуемого объекта).

Предельные возможности радиовизора очень широкие. При использовании эллипсоидной зеркальной антенны проводится измерение макрообъектов. Заменив эллипсоидное зеркало на параболическое можно исследовать мегаобъекты (космические объекты) на расстояниях в пределах когерентности генератора подсветки (длина когерентности L = C(1-Δϕд)/Δωд, где C - скорость света, Δϕд и Δωд - дрейф фазы и частоты сигнала), выполненного в виде мазера. С другой стороны, при уменьшении рабочей длины волны до оптических значений генератора подсветки, выполненного в виде лазера, можно проводить измерения на микрообъектах, которые соизмеримы с внутренними размерами биологических структур.

Выполнение приемной части в многоканальном виде позволяет обеспечить повышение чувствительности в тепловом режиме благодаря параллельному принципу работы, высокую относительную фазовую стабильность в голографическом режиме благодаря исключению временной зависимости информации от дрейфа фазы, а также большую скорость снятия информации в режиме рассеяния. При этом отсутствует необходимость в использовании механических сканеров.

Динамические способности радиовизора во многом определяются элементами связи 6, 22 и ЭВМ, которая обрабатывает результаты экспериментальных измерений (фазы, амплитуды и частоты) и выводит их на экран дисплея в виде голографического изображения, кроме этого ЭВМ обеспечивает обратную связь на управление режимами работы радиовизора.

Каждое изображение исследуемого объекта формируется за десятки миллисекунд, что позволяет наблюдать человеком изменения динамических характеристик исследуемого объекта в реальном масштабе времени. Достаточно длительное временное наблюдение позволяет измерять статическо-динамические характеристики исследуемого объекта.

Реализация радиовизора в малогабаритном компактном виде или мобильной (зеркальную антенну можно заменить линзовой антенной) не представляет принципиальных трудностей, а определяется лишь экономическими факторами.

Изготовляемый радиовизор в стационарном исполнении работает на длине волны 8 мм с 16 каналами (4 х 4) и имеет чувствительность в тепловом режиме менее 0,05 К, а в голографическом режиме десятки микрон. Использование ферритовых переключателей на эффекте Фарадея позволяет достигнуть время переключения ≈ 10-20 мкс, при максимальной частоте модуляции 9,2 кГц, что необходимо для оптимальной фильтрации сигнала.

Похожие патенты RU2139522C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ СРЕДЫ 1994
  • Гвоздев В.И.
  • Иовдальский В.А.
  • Линев А.А.
  • Подковырин С.И.
RU2109274C1
СИСТЕМА МЕСТООПРЕДЕЛЕНИЯ И ДИСПЕТЧЕРИЗАЦИИ МОБИЛЬНЫХ БРИГАД СКОРОЙ ПОМОЩИ 2019
  • Дикарев Виктор Иванович
  • Казаков Николай Петрович
  • Бардулин Евгений Николаевич
  • Лесничий Валерий Владимирович
RU2722518C1
Экологический дирижабль 2019
  • Стахно Роман Евгеньевич
  • Дикарев Виктор Иванович
  • Алексеев Сергей Алексеевич
  • Гончар Артем Александрович
RU2725100C1
ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ СОСТОЯНИЯ ОБЪЕКТОВ УПРАВЛЕНИЯ 1991
  • Мишин Г.Т.
  • Давыдов Н.П.
RU2061253C1
РАДИОПРИЕМНИК ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ 1994
  • Легкий В.Н.
  • Беланов Б.Е.
  • Саблин А.Р.
RU2097920C1
УСТРОЙСТВО СИНХРОНИЗАЦИИ ЧАСОВ 2006
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Финкельштейн Андрей Михайлович
RU2310221C1
КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА 1990
  • Рокеах А.И.
  • Шерстков Ю.А.
SU1739751A1
СПОСОБ СЛИЧЕНИЯ ШКАЛ ВРЕМЕНИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2009
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Кузьмин Владимир Никифорович
  • Финкельштейн Андрей Михайлович
RU2389054C1
СВЕРХВЫСОКОЧАСТОТНЫЙ ТРИГГЕР (ВАРИАНТЫ) 1992
  • Гвоздев В.И.
  • Кузаев Г.А.
RU2054794C1
СОТОВАЯ ТЕЛЕВИЗИОННАЯ ПЕРЕДАЮЩАЯ СИСТЕМА (СТПС) (ВАРИАНТЫ) 1999
  • Асаинов О.Ф.
  • Кусов Г.А.
  • Мостовой В.И.
  • Очков Д.С.
  • Пицык А.П.
RU2152693C1

Иллюстрации к изобретению RU 2 139 522 C1

Реферат патента 1999 года МНОГОФУНКЦИОНАЛЬНЫЙ РАДИОВИЗОР

Многофункциональные радиовизоры предназначены для измерения голографических параметров, электромагнитного и теплового излучения объекта в частном диапазоне с высокой степенью чувствительности и разрешающей способности, что и является достигаемым техническим результатом. Многофункциональный радиовизор содержит приемный канал, включающий задающий генератор, усилитель, излучающую антенну, и приемный канал, включающий смеситель, переключатель, усилитель низкой частоты, квадратичный детектор и приемную антенну. Приемный и передающий каналы соединены через элементы связи с ЭВМ, дополнительно введены приемные каналы и антенна, передающий канал содержит генератор подсветки, выход которого соединен с излучающей антенной, а к входам подключены контроллер, блок синхронизации по сверхвысокой частоте (СВЧ) и задающий генератор, вход контроллера соединен через элементы связи с ЭВМ, а выходы подключены к входу задающего генератора, блоку синхронизации по СВЧ, гетеродину и шине управления по низкой частоте (НЧ), выходы блока синхронизации по СВЧ соединены с входом задающего генератора и входом усилителя соответственно, другой выход задающего генератора подключен к последовательно соединенным гетеродину, усилителю и многоканальному делителю мощности, в каждом приемном канале введены переключатель, соединенный с приемной антенной источником шумового сигнала и вторым входом смесителя, первый вход которого соединен многоканальным делителем мощности передающего канала, первая цепочка, состоящая из последовательно соединенных усилителя промежуточной частоты, квадратичного детектора и первого синхронного детектора, вторая цепочка, состоящая из последовательно соединенных усилителя по НЧ и второго синхронного детектора, и аналого-цифровой преобразователь, входы которого подключены по первой и второй цепочкам к выходу смесителя, а выход через элементы связи подключен к ЭВМ, блок синхронизации по НЧ, выходы которого соединены с переключателем, входом первого и второго синхронных детекторов, а вход через вины управления по НЧ соединен с контроллером передающего канала, причем приемные антенны выполнены в виде моноблока и расположены в фокусе дополнительной антенны, выполненной в виде зеркальной антенны. 1 с. и 6 з.п.ф-лы, 2 ил.

Формула изобретения RU 2 139 522 C1

1. Многофункциональный радиовизор, содержащий передающий канал, включающий задающий генератор, усилитель и излучающую антенну, и приемный канал, включающий смеситель, переключатель, усилитель низкой частоты, квадратичный детектор и приемную антенну, приемный и передающий каналы соединены через элементы связи с ЭВМ, отличающийся тем, что введены дополнительные приемные каналы и дополнительная антенна, передающий канал содержит генератор подсветки, выход которого соединен с излучающей антенной, а к входам подключены контроллер, блок синхронизации по сверхвысокой частоте (СВЧ) и задающий генератор, вход контроллера соединен через элементы связи с ЭВМ, а выходы подключены к входу задающего генератора, блоку синхронизации по СВЧ, гетеродину и шине управления по низкой частоте (НЧ) соответственно, выходы блока синхронизации по СВЧ соединены с другим входом задающего генератора и входом усилителя соответственно, другой выход задающего генератора подключен к последовательно соединенным гетеродину, усилителю и многоканальному делителю мощности, каждый приемный канал содержит переключатель, соединенный с приемной антенной, источником шумового сигнала и вторым входом смесителя, первый вход которого соединен с многоканальным делителем мощности передающего канала, первую цепочку, состоящую из последовательно соединенных усилителя промежуточной частоты, квадратичного детектора и первого синхронного детектора, вторую цепочку, состоящую из последовательно соединенных усилителя по НЧ и второго синхронного детектора, аналого-цифровой преобразователь, входы которого подключены через первую и вторую цепочки к выходу смесителя, а выход через элементы связи подключен к ЭВМ, блок синхронизации по НЧ, выходы которого соединены с переключателем, входом первого и входом второго синхронных детекторов соответственно, а вход через шины управления по НЧ соединен с контроллером передающего канала, причем приемные антенны выполнены в виде моноблока, расположенного в фокусе дополнительной антенны. 2. Многофункциональный радиовизор по п.1, отличающийся тем, что дополнительная антенна выполнена в виде линзы. 3. Многофункциональный радиовизор по п.1, отличающийся тем, что дополнительная антенна выполнена зеркальной. 4. Многофункциональный радиовизор по п.1, отличающийся тем, что делитель мощности и приемные антенны выполнены в виде квадратных матриц. 5. Многофункциональный радиовизор по п.3, отличающийся тем, что для обеспечения возможности исследования макрообъектов поверхность зеркальной антенны выполнена в виде эллипсоида, а моноблок приемных антенн расположен в одном из его фокусов. 6. Многофункциональный радиовизор по п.3, отличающийся тем, что для обеспечения возможности исследования мегаобъектов поверхность зеркальной антенны выполнена в виде параболоида, а генератор подсветки - в виде мазера. 7. Многофункциональный радиовизор по п.3, отличающийся тем, что для обеспечения возможности исследования микрообъектов генератор подсветки выполнен в виде лазера, поверхность зеркальной антенны выполнена в виде эллипсоида, а моноблок приемных антенн расположен в одном из фокусов эллипсоида.

Документы, цитированные в отчете о поиске Патент 1999 года RU2139522C1

Конструкции СВЧ устройств и экранов
/Под ред
А.М.Чернушенко
- м.: Радио и связь, 1983, с
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
БУНКЕРНЫЙ БЛОК ПЕРЕДВИЖНОГО БЕТОННОГО ЗАВОДА 0
  • А. С. Квартенко П. К. Сидоров
SU408815A1
Радиоволновод 1946
  • Введенский Б.А.
  • Данилов А.В.
  • Пономарев М.И.
SU69812A1
КАТАМАРАННОЕ СУДНО 2015
  • Скану Джон
  • Ривьери Лука
RU2683048C2
Пуговица 0
  • Эйман Е.Ф.
SU83A1
Шланговое соединение 0
  • Борисов С.С.
SU88A1
МОДУЛЯЦИОННЫЙ РАДИОМЕТР 1991
  • Лебедев В.С.
  • Орлов И.Я.
  • Кошечкин В.А.
RU2022286C1
НУЛЕВОЙ РАДИОМЕТР 1992
  • Гаврилов Ю.П.
  • Дорофеев В.А.
  • Кубланов В.С.
  • Сиротин А.И.
RU2073875C1
НУЛЕВОЙ РАДИОМЕТР 1992
  • Филатов А.В.
RU2093845C1

RU 2 139 522 C1

Авторы

Гвоздев В.И.

Кузаев Г.А.

Криворучко В.И.

Турыгин С.Ю.

Даты

1999-10-10Публикация

1998-07-30Подача