Изобретение относится к области струйной техники, преимущественно к использованию струйных аппаратов для деаэрации жидких сред, преимущественно питательной воды энергоустановок.
Известен способ деаэрации жидких сред, включающий подачу жидкости на деаэрацию в вакуумный деаэратор и последующее разделение в нем поданной на деаэрацию жидкости на деаэрированную жидкость и выделенный из нее газ с отводом из вакуумного деаэратора газа и дегазированной жидкости (см., RU, патент, 2040942, опубл. 09.08.95).
Из этого же патента Российской Федерации 2040942 известна установка для деаэрации жидкости, содержащая емкость под вакуумом с выполненными в ней трубой с клапаном для подвода жидкости на дегазацию, систему профилированных лотков для обеспечения разделения дегазированной жидкости и выделившегося газа и системы отвода выделившегося газа и дегазированной жидкости на базе струйных аппаратов.
Однако данный деаэратор имеет сложную конструкцию и требует специальных средств для подачи в него жидкости на деаэрацию и средств для откачки из него дегазированной жидкости и выделившегося из нее газа, что делает данные способ и установку экономически мало привлекательными.
Наиболее близким к описываемому по технической сущности и достигаемому результату является способ струйной деаэрации, включающий подачу жидкости на деаэрирование, создание зоны пониженного давления и последующие отвод деаэрированной жидкости и откачку струйным аппаратом выделившегося газа (см. , RU, патент, 2088842, опубл. 27.08.97).
Из этого же патента Российской Федерации известна установка для деаэрирования жидкости, содержащая источник деаэрируемой жидкости, вакуумный деаэратор, жидкостно-газовый струйный аппарат и насос, при этом вакуумный деаэратор подключен к источнику деаэрируемой жидкости, насос входом и жидкостно-газовый струйный аппарат выходом подключены к источнику деаэрируемой жидкости и выходом насос подключен к соплу жидкостно-газового струйного аппарата.
Данные способ деаэрации подпиточной жидкости и установка для его осуществления позволяют проводить деаэрацию подпиточной воды в сочетании с ее химической очисткой. Однако в данных способе и установке эффективно используется только один из компонентов, который позволяет деаэрировать воду - пониженное давление над жидкостью. В тоже время недостаточная развитость поверхности веды в момент ее дегазации и малоподвижное состояние воды в момент дегазации снижают эффективность данных способов и установки подготовки подпиточной воды.
Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности деаэрации жидкости путем резкого увеличения поверхности газовыделения жидкости и формирования условий для быстрого отвода выделившегося из жидкости газа при уменьшении материалоемкости установки для деаэрации жидкости, в которой реализован данный способ деаэрации.
Данная задача решается за счет того, что в способе струйной дегазации, включающем подачу жидкости на деаэрирование, создание зоны пониженного давления и последующие отвод деаэрированной жидкости и откачку жидкостно-газовым струйным аппаратом выделившегося газа, зону пониженного давления создают в дегазирующем струйном аппарате путем подачи под напором в сопло нагретой деаэрируемой жидкости, при этом за счет расширения жидкости, за выходным сечением сопла создают зону пониженного давления с образованием развитой поверхности газовыделения из деаэрируемой жидкости, формированием газопарожидкостного потока с объемным газопаросодержанием в смеси не менее 0,8 и переводом за счет этого парогазожидкостной смеси на сверхзвуковой режим течения, затем в парожидкостном струйном аппарате организуют скачок давления с преобразованием в нем туманоподобной парогазожидкостной смеси перед скачком давления в жидкостной поток с пузырьками газа за скачком давления при объемном газосодержании в смеси не более 0,7, после чего жидкостной поток с пузырьками газа подают в циклон, в котором путем откачки газа жидкостно-газовым струйным аппаратом и закрутки жидкостного потока с пузырьками газа формируют зону пониженного давления, в которую организуют отвод выделившегося из деаэрируемой жидкости газа.
Решаемая задача решается также за счет того, что в струйной установке для деаэрирования жидкости, содержащей источник деаэрируемой жидкости, вакуумный деаэратор, жидкостно-газовый струйный аппарат и циркуляционный насос, последний входом и жидкостно-газовый струйный аппарат выходом подключены к источнику деаэрируемой жидкости и выходом циркуляционный насос подключен к соплу жидкостно-газового струйного аппарата, вакуумный деаэратор выполнен в виде дегазирующего струйного аппарата, а установка снабжена циклоном, нагревателем и подающим насосом, при этом подающий насос входом подключен к источнику деаэрируемой жидкости, сопло дегазирующего струйного аппарата подключено к нагревателю, который в свою очередь подключен к выходу подающего насоса, выход дегазирующего струйного аппарата подключен к входу в циклон, который газовым выходом подключен к газовому входу жидкостно-газового струйного аппарата, а выходом жидкости - к потребителю деаэрированной жидкости.
Как показали проведенные исследования, организация процесса дегазирования жидкости оказывает существенное влияние на эффективность протекания процесса деаэрации жидкости.
Если рассмотреть какую либо-точку в объеме жидкости, то, кроме условия равновесия между давлением окружающей жидкость среды и внутренним давлением жидкости, на эту точку в массе жидкости действует также гидростатическое давление столба жидкости и чем глубже расположена рассматриваемая точка, тем это давление выше. Поэтому в обычных условиях удалить газ из нижних слоев жидкости труднее, чем с поверхности. Кривая растворимости отвечает теоретически условию равновесия в поверхностном слое. Поэтому при создании деаэраторов и разработке способов их работы существует стремление к максимальному развитию поверхности дегазируемой жидкости. Кроме того, приходится учитывать тот факт, что в сложных условиях работы деаэратора при одновременном воздействии на жидкость динамических факторов, таких, например, как скорость и режим течения жидкости с учетом неравномерности распределения температуры и давления в объеме деаэратора практически не работает закон Генри, выражающий прямую пропорциональность между количеством растворенного в жидкости газа и парциальным давлением этого газа над поверхностью жидкости.
В то же время была установлена четкая зависимость между сжимаемостью жидкости и ее растворяющей способностью - чем большей сжимаемостью обладает жидкость, тем большей растворяющей способностью она обладает. Таким образом, максимум показателя изоэнтропы отвечает минимуму растворяющей способности жидкости, а качество газоудаления в решающей степени зависит от двух определяющих факторов: однородности среды по температуре и величины поверхности газовыделения. В этой связи становится понятным, что выполнение вакуумного деаэратора в виде дегазирующего струйного аппарата с созданием в нем высокоразвитой поверхности газовыделения в зоне пониженного давления позволяет резко активизировать процессы дегазации, а в сочетании с формированием в скачке давления жидкостного потока с газовыми пузырьками позволяет создать предпосылки для последующего облегченного отделения газа от дегазированной жидкости непосредственно за дегазирующим струйным аппаратом в циклоне.
Не менее важное значение оказывают обеспечиваемые в дегазирующем струйном аппарате режимные параметры, а именно режимы газосодержания на различных этапах деаэрации жидкости. Было установлено, что достижение при расширении нагретой жидкости развитой поверхности газовыделения из деаэрируемой жидкости обеспечивается при формировании газопарожидкостного потока с объемным газопаросодержанием в смеси не менее 0,8 и переводом за счет этого парогазожидкостной смеси на сверхзвуковой режим течения. Кроме того, важно обеспечить за скачком давления формирование жидкостного потока с газовыми пузырьками с объемным газосодержанием в смеси не более 0,70, что позволяет создать условия в циклоне для достаточно легкого удаления из жидкости газа и при этом не дать развиться процессу обратного растворения газа в жидкости, что могло бы снизить эффективность проводимого процесса деаэрации.
И последнее, на что необходимо обратить внимание - это достижение возможности обеспечить газоотделение без потерь дегазируемой жидкости на испарение и, как следствие, уменьшение энергозатрат на проведение процесса деаэрирования и уменьшение материалоемкости установки для проведения процесса деаэрации. Эта особенность способа и установки заключается в том, что в процессе формирования развитой поверхности для дегазации жидкости неизбежно идет параллельный процесс парообразования, что раньше требовало использования специального оборудования для проведения процесса конденсации этих паров. В нашем случае следующий за процессом газовыделения скачок давления вызывает сжатие парогазовой составляющей потока с формированием пузырьковой формы газовой составляющей потока и конденсацией в процессе сжатия газа паровой составляющей потока. В результате в циклон поступает газожидкостной поток с пузырьковой формой газовой составляющей, что и позволяет в циклоне обеспечить быстрое и эффективное отделение газа от жидкости.
Использование в установке деаэрации дегазирующего струйного аппарата в качестве вакуумного деаэратора в сочетании с циклоном, нагревателем и жидкостно-газовым струйным аппаратом для откачки газа и создания пониженного давления в циклоне позволило в сочетании с обеспечением требуемых последовательности действий и режимных параметров создать законченный технологический цикл деаэрации от забора недеаэрированной жидкости до подачи деаэрированной жидкости потребителю, например в паровой котел энергоустановки.
На чертеже представлена принципиальная схема струйной установки для деаэрирования жидкости, в которой реализован способ струйной деаэрации.
Струйная установка для деаэрирования жидкости содержит источник 1 деаэрируемой жидкости, вакуумный деаэратор, жидкостно-газовый струйный аппарат 2 и циркуляционный насос 3, при этом циркуляционный насос 3 входом и жидкостно-газовый струйный аппарат 2 выходом подключены к источнику 1 деаэрируемой жидкости и выходом насос 3 подключен к соплу 4 жидкостно-газового струйного аппарата 2.
Вакуумный деаэратор выполнен в виде дегазирующего струйного аппарата 5, а установка снабжена циклоном 6, подающим насосом 8 и нагревателем 13, при этом подающий насос 8 входом подключен к источнику 1 деаэрируемой жидкости, сопло 7 дегазирующего струйного аппарата 5 подключено к нагревателю 13, который в свою очередь подключен к выходу из подающего насоса 8, выход 10 дегазирующего струйного аппарата 5 подключен к входу в циклон 6, который газовым выходом 11 подключен к газовому входу жидкостно-газового струйного аппарата 2, а выходом жидкости 12 - к потребителю деаэрированной жидкости, например к паровому котлу энергоустановки, или какому-либо другому потребителю.
Способ струйной деаэрации реализуется следующим образом.
Деаэрируемая жидкость из источника 1 подается насосом 8 в нагреватель 13 и далее в сопло 7 дегазирующего струйного аппарата 5. Деаэрируемая нагретая жидкость, истекая из сопла 7, расширяется и создает за выходным сечением сопла 7 зону пониженного давления, в которой образуется развитая поверхность газовыделения из деаэрируемой жидкости с формированием газопарожидкостного потока с объемным газопаросодержанием в смеси не менее 0,8 и переводом за счет этого парогазожидкостного потока на сверхзвуковой режим течения (как следствие снижения скорости звука в двухфазной газожидкостной смеси). Затем в проточной части дегазирующего струйного аппарата 5 организуют скачок давления. При этом туманоподобный парогазожидкостной поток в скачке давления преобразуется в жидкостной поток с пузырьками газа при объемном газосодержании в смеси не более 0,70. Сразу после этого жидкостной поток с пузырьками газа подают из дегазирующего струйного аппарата 5 в циклон 6, где жидкостной поток с пузырьками газа интенсивно закручивают, например путем подачи потока в циклон 6 через тангенциальный вход. Одновременно, путем подачи циркуляционным насосом 3 жидкости из источника 1 в сопло 4 жидкостно-газового струйного аппарата 2, обеспечивают откачку газа из циклона 6 и создание в нем пониженного давления, что в сочетании в закруткой потока обеспечивает интенсивный отвод газовых пузырьков на поверхность раздела жидкость-газ и вывод выделившего газа из циклона 6. Полученная в жидкостно-газовом струйном аппарате 2 газожидкостная смесь поступает из струйного аппарата 2 в источник 1 деаэрируемой жидкости, например бак, где газ отделяется от жидкости, а жидкость вновь поступает в технологический цикл деаэрации.
Таким образом, реализуется управляемый и контролируемый процесс деаэрации жидкой среды, например воды, в соответствии с описываемым способом струйной деаэрации.
Изобретение предназначено для деаэрации жидких сред. В установке вакуумный деаэратор выполнен в виде дегазирующего струйного аппарата. Установка снабжена циклоном, нагревателем и подающим насосом. Подающий насос входом подключен к источнику деаэрируемой жидкости. Сопло струйного аппарата подключено к нагревателю, который в свою очередь подключен к выходу из подающего насоса. Выход струйного аппарата подключен к входу в циклон, который газовым выходом подключен к газовому входу жидкостно-газового струйного аппарата, а выходом жидкости - к потребителю деаэрированной жидкости. Зону пониженного давления создают в дегазирующем струйном аппарате. В последнем создают зону пониженного давления с образованием развитой поверхности газовыделения и формированием газопарожидкостного потока с объемным газопаросодержанием в смеси не менее 0,3 и переводом потока смеси на сверхзвуковой режим течения. Затем в дегазирующем струйном аппарате организуют скачок давления с преобразованием в нем потока в жидкостной при объемном газосодержании не более 0,70. После этого жидкостной поток подают в циклон, в котором формируют зону пониженного давления, в которую отводят газ из деаэрируемой жидкости. В результате повышается эффективность деаэрации жидкости. 2 c.п.ф-лы, 1 ил.
УСТАНОВКА ДЛЯ ПОДГОТОВКИ ПОДПИТОЧНОЙ ВОДЫ | 1992 |
|
RU2088842C1 |
Насосная установка | 1985 |
|
SU1332085A1 |
Насосная установка | 1985 |
|
SU1239419A1 |
Пюпитр для работы на пишущих машинах | 1922 |
|
SU86A1 |
Насосная установка | 1980 |
|
SU918573A1 |
Устройство для формования трубчатых изделий из жестких бетонных смесей с немедленной распалубкой | 1982 |
|
SU1092044A1 |
Авторы
Даты
1999-12-10—Публикация
1998-02-13—Подача