Изобретение относится к технике изготовления световодов типа оптического волновода, а именно светопроводящих каналов, и может быть использовано для создания оптических усилителей и/или оптических генераторов, которые применяются в волоконно-оптической связи, а также может быть использовано для изготовления элементов трехмерной памяти.
В технике волоконно-оптической связи в настоящее время существует проблема создания оптических усилителей и оптических генераторов в интегрально-оптическом исполнении, содержащих массивную подложку, внутри которой сформирован одномодовый светопроводящий канал. Светопроводящий канал изготавливают путем изменения, а именно, увеличения тем или иным способом показателя преломления материала в месте предполагаемого формирования канала по сравнению с величиной показателя преломления окружающего материала. В частности, в германосиликатном стекле изменение показателя преломления осуществляют за счет воздействия на стекло лазерным излучением УФ диапазона с длиной волны от 275 нм до 390 нм (патент РФ N 2097803, М.кл.6 G 02 В 6/124, опубл. 1997 г.).
Известен способ изготовления одномодового светопроводящего канала в лазерно активной среде, например в массивной подложке из фторированного стекла с примесью празеодима, позволяющий получить изменение показателя преломления материала в канале по сравнению с показателем преломления подложки в пределах от 4 • 10-3 до 8 • 10-2 (патент Франции N 2675592, М.кл.5 G 02 В 6/12, опубл. 1992 г.). В этом способе одномодовый светопроводящий канал формируют вблизи поверхности подложки локальной диффузией свинца, например путем бомбардировки ионами свинца поверхности подложки через соответствующую маску. После этого, для уменьшения потерь оптического излучения в канале, поверхность подложки, содержащую канал, покрывают слоем из того же фторированного стекла. Затем осуществляют дополнительное покрытие эпоксидной смолой. Недостатки этого способа связаны с тем, что он является длительным, сложным и дорогостоящим.
Наиболее близким аналогом к заявляемому изобретению является способ изготовления одномодового светопроводящего канала в прозрачном диэлектрике путем модификации структуры диэлектрика с помощью излучения фемтосекундного лазера (K. Miura et al. "Photowritten optical waveguides in various glasses with ultrashort pulse laser", Appl. Phys. Lett. v. 71, N 23, p. 3329-3331, 1997), который выбран в качестве прототипа. Способ прототип включает в себя формирование воздействующего излучения в виде последовательности импульсов с длительностью отдельного импульса 120 фс (фемтосекунд), энергией в импульсе порядка 5 мкДж и частотой повторения импульсов 200 кГц, фокусировку этого излучения с помощью короткофокусной линзы в начало выбранной области внутри диэлектрического образца и прецизионное перемещение образца относительно зоны фокусировки в направлении оси лазерного луча. Способ прототип позволяет изготавливать одномодовый светопроводящий канал длиной от 40 мкм до нескольких миллиметров при диаметре канала (8 - 10) мкм. При этом формирование светопроводящего канала осуществляют в режиме "от точки к точке", прецизионно перемещая образец относительно точки обработки (зоны фокуса короткофокусной линзы). Модификация структуры прозрачного диэлектрика в обрабатываемой точке с диаметром (8 - 10) мкм происходит в данном способе за счет многофотонных процессов, для осуществления которых в каждую обрабатываемую точку направляют порядка 12000 фемтосекундных импульсов. При указанной скорости прецизионного перемещения 20 мкм/с для изготовления канала длиной 10 мм требуется время порядка 10 мин и количество импульсов порядка 108. Причем для воспроизводимости результатов все эти импульсы должны быть эквидистантны и стабильны по длительности и по энергии, что само по себе является не простой технической задачей. Кроме того, к недостаткам прототипа относится ограничение длины (продольного размера) изготавливаемого канала, т.к. только короткофокусная линза (с фокусным расстоянием < 1 см) обеспечивает в прототипе требуемый поперечный размер (8 -10) мкм зоны обработки и соответственно требуемый поперечный размер канала. Выбор линзы с большим фокусным расстоянием хотя и может обеспечить больший продольный размер канала, но приведет к увеличению его поперечного размера, что не позволит изготовить одномодовый светопроводящий канал. Необходимость непрерывного прецизионного перемещения образца относительно зоны обработки и выбор определенной скорости его перемещения также вносят определенные трудности в реализацию способа прототипа.
Задачей, на решение которой направлено настоящее изобретение, является разработка способа изготовления одномодового светопроводящего канала в прозрачном диэлектрике, позволяющего формировать упомянутый канал за один импульс излучения фемтосекундного лазера. Технический результат в разработанном способе достигается тем, что разработанный способ изготовления одномодового светопроводящего канала в прозрачном диэлектрике, так же как и способ прототип, включает в себя формирование воздействующего излучения фемтосекундного лазера и фокусировку этого излучения на выбранную область в диэлектрическом образце.
Новым в разработанном способе является то, что для изготовления одного светопроводящего канала используют излучение одиночного импульса, которое фокусируют в выбранную область диэлектрика с помощью аксикона, при этом энергию импульса выбирают такой, чтобы интенсивность излучения J0 вдоль оси аксикона (вдоль его фокуса) превышала пороговую интенсивность ионизации Jпор. обрабатываемого диэлектрика.
В частном случае при изготовлении нескольких светопроводящих каналов в одном диэлектрическом образце для изготовления любого (n + 1)-го светопроводящего канала (где n = 1, 2, 3...), осуществляют или n параллельных перемещений образца в направлении, перпендикулярном оси аксикона, или n угловых перемещений образца вокруг оси, параллельной оси аксикона.
Технический результат - создание одного светопроводящего канала с помощью излучения одного фемтосекундного импульса достигается в разработанном способе за счет того, что в выбранной области диэлектрика в течение длительности одного импульса создают условия для образования плазмы, которая в свою очередь обеспечивает поглощение излучения и, как следствие, модификацию структуры вещества в выбранной области.
Влияние указанных в формуле изобретения существенных признаков на достижение указанного технического результата можно пояснить следующим образом.
Аксиконная линза (аксикон) фокусирует падающий на нее пучок излучения в нить, вытянутую вдоль ее оси. Авторы показали, что в силу такой геометрии аксиконной фокусировки, используя излучение лишь одного импульса фемтосекундного лазера с энергией импульса порядка нескольких миллиджоулей (мДж), можно создавать внутри прозрачного диэлектрика интенсивность излучения J > 1014 Вт/см2, т.е. превышающую пороговую интенсивность ионизации Jпор. диэлектрика. При такой высокой интенсивности излучения ионизация диэлектрика, т. е. образование плазмы, происходит уже на переднем фронте лазерного импульса. Остальная часть энергии импульса поглощается этой образовавшейся вдоль линии фокусировки плазмой. В результате чего происходит очень быстрый, сильный нагрев (до 106 К) области фокусировки, занятой плазмой, и, следовательно, здесь развивается огромное давление (порядка 108 Бар). В этих экстремальных условиях температуры и давления после прохождения импульса происходит модификация структуры вещества диэлектрика (что подтверждено экспериментально). Вследствие чего вдоль линии фокусировки аксикона образуется светопроводящий канал с измененным показателем преломления. Продольный и поперечный размеры канала определяются геометрией фокусировки (углом при вершине аксикона), энергией импульса и параметрами материала диэлектрика. В зависимости от материала образца и энергии импульса получены одномодовые светопроводящие каналы длиной от нескольких миллиметров до нескольких сантиметров с поперечным размером от 0,5 мкм до нескольких единиц микрон.
На фиг. 1 представлена схема устройства, реализующего разработанный способ.
На фиг. 2 представлена фотография одномодового светопроводящего канала в кварце, сделанная с помощью микроскопа.
Устройство на фиг. 1 содержит задающий фемтосекундный лазер 1, снабженный формирователем 2 воздействующих импульсов, аксикон 3 и установленный в области его фокуса обрабатываемый диэлектрический образец 4, в котором изготавливают светопроводящий канал 5.
В качестве задающего фемтосекундного лазера 1 может быть использован, например, серийно выпускаемый фирмой Spectra Physics (США) лазер "Tsunami". В качестве формирователя 2 воздействующих импульсов может быть использована общепринятая в настоящее время схема усиления фемтосекундных импульсов, известная по работе Strickland D., Mouron G. Opt. Commun. v. 56, p. 219, 1985. Аксикон 3 выполнен из однородного оптического стекла К-8. В примере конкретной реализации использован аксикон 3 с углом при вершине 140o. Светопроводящий канал 5 или несколько параллельных каналов могут быть изготовлены разработанным способом в любом прозрачном диэлектрике 4, например кварце, флюорите, сапфире, алмазе, стекле и полимерных материалах. Для установки в зону фокуса аксикона 3 диэлектрический образец 4 должен быть выполнен в виде обработанной плоскопараллельной пластины. Изготовленные светопроводящие каналы 5 контролируются с помощью микроскопа (на чертеже не показан).
Разработанный способ изготовления светопроводящих каналов реализуют следующим образом (см. фиг. 1).
Из излучения задающего фемтосекундного лазера 1, обеспечивающего стандартный режим генерации фемтосекундных импульсов с энергией 1 - 3 нДж и частотой следования 100 МГц, с помощью формирователя 2 формируют последовательность воздействующих импульсов с энергией в импульсе 5 мДж и частотой следования 10 Гц. Это излучение аксиконом 3 с углом при вершине 140o фокусируют в выбранную область диэлектрического образца 4 из плавленного кварца, имеющего величину пороговой интенсивности ионизации Jпор. порядка 1014 Вт/см2. Выбранная геометрия аксиконной линзы 3 и указанная энергия одиночного импульса обеспечивают интенсивность J0 излучения вдоль оси аксикона (линии фокусировки) 5 • 1014 Вт/см2, что обеспечивает процесс модификации структуры плавленного кварца в выбранной области образца 4 и формирование одномодового светопроводящего канала 5.
Вид участка изготовленного одномодового светопроводящего канала 5, сфотографированный с помощью микроскопа, представлен на фиг. 2. Цена деления на масштабной линейке 6 составляет 10 мкм. Поперечный размер канала 5 равен 1,5 мкм, продольный размер приведенного на фотографии участка канала 5 равен 100 мкм. Полный продольный размер всего канала 5 равен толщине образца 4 (20 мм).
Соседний светопроводящий канал изготавливают с помощью другого одиночного фемтосекундного импульса после либо параллельного смещения образца 4 на выбранную величину в направлении, перпендикулярном оси аксикона 3, либо после поворота образца 4 на выбранный угол вокруг оси, параллельной оси аксикона 3.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НАНОСТРУКТУРИРОВАНИЯ ПОВЕРХНОСТИ ДИЭЛЕКТРИЧЕСКОЙ ПОДЛОЖКИ С ПОМОЩЬЮ БЛИЖНЕПОЛЬНОЙ ЛИТОГРАФИИ | 2014 |
|
RU2557677C1 |
СПОСОБ ФОРМИРОВАНИЯ ДЕФЕКТОВ В ОБЪЕМЕ ОБРАЗЦА ДИЭЛЕКТРИКА ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ | 2017 |
|
RU2671150C1 |
СПОСОБ ПОЛУЧЕНИЯ ОДНОМОДОВОГО ВОЛНОВОДА | 2016 |
|
RU2647207C1 |
Способ изготовления волоконных брэгговских решеток в нефоточувствительных волоконных световодах | 2016 |
|
RU2610904C1 |
СПОСОБ ЛАЗЕРНОЙ ЗАПИСИ ИНТЕГРАЛЬНЫХ ВОЛНОВОДОВ | 2021 |
|
RU2781465C1 |
Устройство для создания периодических структур показателя преломления внутри прозрачных материалов | 2018 |
|
RU2695286C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ОПТИЧЕСКОГО ВОЛНОВОДНОГО УСТРОЙСТВА | 2000 |
|
RU2183026C1 |
СПОСОБ СОЗДАНИЯ ВЫСОКОАСПЕКТНЫХ ПРОТЯЖЕННЫХ СТРУКТУР С ДИАМЕТРАМИ СУБМИКРОННЫХ РАЗМЕРОВ В ДИЭЛЕКТРИЧЕСКОМ КРИСТАЛЛЕ ФЕМТОСЕКУНДНЫМИ РЕНТГЕНОВСКИМИ ИМПУЛЬСАМИ | 2023 |
|
RU2815615C1 |
СПОСОБ ФОРМИРОВАНИЯ СОДЕРЖАЩЕГО НАНОКРИСТАЛЛЫ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ | 2009 |
|
RU2391742C1 |
ФАЗОКОНТРАСТНОЕ УСТРОЙСТВО ДЛЯ ВИЗУАЛИЗАЦИИ ПРОЗРАЧНЫХ ОБЪЕКТОВ | 2007 |
|
RU2353961C1 |
Способ используется для создания оптических усилителей или оптических генераторов, которые применяются в волоконно-оптической связи, и для изготовления элементов трехмерной памяти. Способ позволяет изготавливать один светопроводящий канал за один импульс фемтосекундного лазера. Воздействующее излучение фокусируют в выбранную область диэлектрика с помощью аксикона. Энергию импульса выбирают такой, чтобы интенсивность излучения вдоль оси аксикона, т.е. вдоль его фокуса, превышала пороговую интенсивность ионизации обрабатываемого диэлектрика. Обеспечено упрощение способа изготовления оптических волноводов. 1 з.п. ф-лы, 2 ил.
EP 0797112 A1, 24.09.1997 | |||
АЛКИЛФЕНИЛБИСАЦИЛФОСФИНОКСИДЫ, ИХ СМЕСИ, ФОТОПОЛИМЕРИЗУЕМАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ ИХ, СПОСОБ ФОТОПОЛИМЕРИЗАЦИИ И СУБСТРАТ, ПОКРЫТЫЙ ЭТОЙ КОМПОЗИЦИЕЙ | 1997 |
|
RU2180667C2 |
DE 19616324 A1, 30.10.1997 | |||
СПОСОБ ИЗМЕНЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ В ГЕРМАНОСИЛИКАТНОМ СТЕКЛЕ | 1996 |
|
RU2097803C1 |
Авторы
Даты
2000-05-27—Публикация
1999-06-07—Подача