СПОСОБ ПОЛУЧЕНИЯ ОДНОМОДОВОГО ВОЛНОВОДА Российский патент 2018 года по МПК G02B6/10 C03B37/27 

Описание патента на изобретение RU2647207C1

Изобретение относится к области лазерной обработки материалов, в частности к способу получения одномодового волновода, основанному на модификации стекла сфокусированным пучком фемтосекундных лазерных импульсов. Воздействие фемтосекундного излучения позволяет создавать в объеме образца обладающую волноводными свойствами структуру, состоящую из набора треков, центры которых расположены на цилиндрической поверхности параллельно его образующей, и ограничивают необлученную область. Полученный результат может быть использован для создания волноводных устройств ИК оптики, в том числе волноводных лазеров. Волноводы предлагаемой архитектуры перспективны для генерации суперконтинуума в среднем ИК.

В общем случае для создания волновода требуется получить осесимметричную систему, в которой показатель преломления в центральной области больше показателя преломления на периферии. После заведения в сердцевину такой системы световая волна будет распространяться, не выходя за пределы оболочки вследствие эффекта полного внутреннего отражения.

В настоящее время известны несколько способов создания волноводов, "погруженных" в объем стекла. Очень перспективными являются способы формирования волноводов в объеме прозрачного диэлектрика путем воздействия ультракоротких (фемтосекундных) лазерных импульсов. Энергия импульса должна превышать пороговую энергию модификации материала. Фемтосекундное излучение, сфокусированное объективом, модифицирует стекло в области перетяжки лазерного пучка, не изменяя при этом окружающий объем вещества. При движении с постоянной скоростью пучка относительно образца в объеме будет формироваться канал с отличным от исходного показателем преломления.

В случае если внутри промодифицированной области произошло увеличение показателя преломления, то полученный трек можно использовать в качестве волновода, если же внутри промодифицированной области происходит уменьшение показателя преломления, то можно из нескольких треков создать оболочку с пониженным показателем преломления, ограничивающую непромодифицированную сердцевину.

Известен способ формирования волновода в оптическом стекле марки К8 с помощью фемтосекундного лазера (патент RU 2150135 МПК7, G02B 6/13, опубл. 07.06.1999), фокусируемого в объем стекла с помощью аксикона. Канал с увеличенным показателем преломления формировался вдоль оптической оси системы, а использование достаточно большой энергии в импульсе (несколько миллиджоулей) позволяло модификацию стекла одиночными импульсами. Использовались фемтосекундные импульсы с энергией 5 мДж с частотой повторения 10 Гц для создания канала длиной 20 мм и поперечным размером 1.5 мкм. Недостатком данного способа являются большие энергии в импульсе, что может приводить к формированию областей с повышенным внутренним напряжением (стрессы), и неоднородность светового поля вдоль оси аксикона.

Известен способ создания волновода с увеличенным показателем преломления в сердцевине относительно периферии в объеме кварцевого стекла (патент US 2002/0076655 МПК7, G03F 7/00, опубл. 20.06.2002). Модификация осуществлялась титан-сапфировым лазером (длина волны 830 нм): длительность фемтосекундных импульсов составляла 18÷120 фс, частота повторения 1÷200 кГц, энергия в импульсе была в интервале 0.5÷10 мкДж. Для фокусировки использовался объектив с числовой апертурой 0.16, образец перемещался относительно записывающего пучка со скоростью 20÷500 мкм/с. К недостаткам данной методики относятся высокая энергия записывающего импульса и медленная скорость перемещения образца (записи). Аналогичный способ описан для формирования волноводов в силикатном стекле с содержанием оксида германия и во фторидном стекле (патент ЕР 0797112 МПК7 G02B 6/12 опубл. 14.02.2001). Также использовался титан-сапфировый лазер (длина волны 800÷1000 нм): длительность импульсов составляла 150 фс, частота повторения от 10 кГц. Общим недостатком методики фемтосекундного формирования сердцевины волновода является то, что модифицируется именно та область, по которой должен двигаться световой пучок. Имеет место изменение свойств материала, которое может быть неоднородным по длине трека. Кроме того, размеры волноводной моды ограничены размерами области перетяжки записывающего пучка.

Более перспективными являются волноводы с неизмененной сердцевиной и промодифицированной оболочкой, т.е. когда записывается несколько треков, центры которых в поперечном сечении расположены на окружности. В этом случае требуется, чтобы внутри облученной области происходило уменьшение показателя преломления. Волноводы с промодифицированной оболочкой обладают однородной неизмененной сердцевиной, кроме того, форма сердечника может изменяться в зависимости от требований к волноводу, в таких волноводах можно реализовывать ведение большой моды, осуществлять управление модовым составом ведомого излучения.

Известен способ (патент RU 2578747, МПК G02B 6/10, опубл. 24.12.2014) формирования оболочки с пониженным показателем преломления в кварцевом стекле при облучении лазером с длиной волны 1040 нм, при длительности импульса 360 фс, с частотой следования импульсов 0.1-10 МГц. Облучение кварцевого стекла при подобных условиях приводило к формированию трека с увеличенным показателем преломления в центральной части трека, однако на периферии имело место небольшое уменьшение показателя преломления по сравнению с непромодифицированной областью, т.е. позволявшее создать волновод с пониженной оболочкой. Недостатком данной методики являются большие энергии в фемтосекундном импульсе и маленький диапазон уменьшения показателя преломления на периферии промодифицированной области, что может приводить к большим утечкам энергии из волноводной области.

Наиболее близким аналогом к заявляемому изобретению по технической сущности и достигаемому результату является способ формирования волноводов с промодифицированной оболочкой, описанный в патенте WO 2005/040874 МПК7 G02B 6/12 опубл. 06.05.2005, в котором использовалось фемтосекундное излучение на длине волны 800 нм, при длительности импульса 120 фс, частоте следования импульсов 1 кГц, и энергии 0.5 мДж, в качестве материала использовался кристалл иттрий-алюминиевого граната (YAG), легированный ионами неодима. Для фокусировки использовался объектив с числовой апертурой, равной 0.65.

Недостатком данного способа являются большие энергии, необходимые для фемтосекундной модификации кристаллической фазы, и медленная скорость записи каждого из треков, формирующих волновод.

Предлагаемое изобретение решает задачи упрощения записи в прозрачном диэлектрике волновода с пониженным показателем преломления в промодифицированной оболочке и уменьшение энергии модификации.

Техническим результатом изобретения является создание структуры с оболочкой с пониженным показателем преломления в стекле.

Этот технический результат достигается способом получения одномодового волновода, основанным на модификации показателя преломления прозрачного диэлектрика, включающим фокусировку фемтосекундных лазерных импульсов в объем диэлектрика и движение сфокусированного пучка по заданной траектории, приводящее к уменьшению показателя преломления материала в области фокусировки вдоль пути движения пучка. Последовательная запись нескольких треков пониженного показателя преломления, ограничивающих область из непромодифицированного материала, приводит к созданию одномодового волновода. При этом в качестве прозрачного диэлектрика используют теллуритное стекло, а фемтосекундный лазер генерирует на длине волны 1028 нм импульсы с частотой в интервале 1-1000 кГц длительностью 150-500 фс и с энергией 14-200 нДж, при перемещении сфокусированного объективом с числовой апертурой в диапазоне 0.3-0.9 лазерного пучка относительно стекла в скоростном интервале 0.033-20 мм/с, шаг между треками, формирующими оболочку волновода, находится в интервале 1.4-3.6 мкм.

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 представлена схема системы для фемтосекундной модификации стекла: 1 - фемтосекундный лазер, 2 - зеркала, 3 - аттенюатор, 4 - полуволновая пластинка, 5 - объектив, 6 - образец, 7 - система позиционирования на воздушной подушке.

На фиг. 2 приведена фотография поперечного сечения записанной структуры с пониженным показателем преломления в оболочке, полученная с помощью микроскопа.

На фиг. 3 показано распределение интенсивности на выходе из созданного волновода.

Схема экспериментального стенда показана на фиг. 1. Источником фемтосекундных импульсов являлся иттербиевый лазер 1, генерирующий на длине волны 1028 нм. Для управления направлением распространения пучка использовались зеркала 2, для контроля энергии и поляризации пучка использовали моторизированные аттенюатор 3 и полуволновую пластинку 4. Пучок фокусировался объективом 5 в объеме образца 6, помещенного на прецизионную трехкоординатную систему позиционирования на воздушной подушке 7.

Достижение заявляемого технического результата подтверждается следующими примерами.

Пример 1.

Использовали образец, содержащий TeO2 70 мол. %, WO3 22 мол. %, Bi2O3 8 мол. %. Параметры записи: длительность импульса 180 фс, частота следования 180 кГц, энергия в импульсе 70 нДж, скорость движения пучка относительно образца составляла 6 мм/с. Использовали объектив с увеличением 100х и числовой апертурой NA=0.85.

Облучение приводило к формированию в объеме стекла (на глубине 110 мкм относительно поверхности) гладких треков высотой около 30 мкм с показателем преломления ниже, чем в непромодифицированной области. Изменение показателя преломления Δn=-0.0008.

Была записана структура из 32 треков, окружающих непромодифицированную область. В процессе записи поляризация пучка была ортогональной направлению движения столика с образцом. Сначала записывались самые глубокие треки, потом - верхний уровень, чтобы не было искажений при фокусировке в объеме стекла при прохождении через промодифицированную область. Расстояние между треками составляло 1.4 мкм, диаметр волноводной зоны (сердцевины) равен 12 мкм. Фотография поперечного сечения записанной волноводной структуры приведена на фиг. 2.

Экспериментально полученное распределение интенсивности излучения (на длине волны 1064 нм), предварительно заведенного в созданную структуру на выходе из волновода, показано на фиг.3. Наблюдалось одномодовое ведение, полные внутренние волноводные потери не превышали 0.15 дБ/см.

Пример 2.

Использовали образец, содержащий TeO2 70 мол. %, WO3 22 мол. %, Bi2O3 8 мол. %. Параметры записи: длительность импульса 180 фс, частота следования 180 кГц, энергия в импульсе 70 нДж, скорость движения пучка относительно образца составляла 6 мм/с. Использовали объектив с увеличением 100х и числовой апертурой NA=0.85.

Изменение показателя преломления Δn=-0.0008. Расстояние между треками составляло 3.6 мкм. Был записан волновод с оболочкой с пониженным показателем преломления. Диаметр сердцевины составлял 18 мкм.

Пример 3.

Использовали образец, содержащий TeO2 73 мол. %, WO3 22 мол. %, Bi2O3 5 мол. %. Параметры записи: длительность импульса 180 фс, частота следования 1 кГц, энергия в импульсе 65 нДж, скорость движения пучка относительно образца составляла 0.033 мм/с. Использовали объектив с увеличением 100х и числовой апертурой NA=0.85.

Облучение приводило к формированию в объеме стекла гладких треков высотой около 20 мкм с показателем преломления ниже, чем в непромодифицированной области.

Изменение показателя преломления Δn=-0.0008. Понижение показателя преломления внутри промодифицированной области указывает на возможность создания волновода с оболочкой с пониженным показателем преломления для данного класса соединений в описанных выше экспериментальных условиях.

Пример 4.

Использовали образец, содержащий TeO2 73 мол. %, WO3 22 мол. %, Bi2O3 5 мол. %. Параметры записи: длительность импульса 150 фс, частота следования 180 кГц, энергия в импульсе 70 нДж, скорость движения пучка относительно образца составляла 6 мм/с. Использовали объектив с числовой апертурой NA=0.3.

Облучение приводило к формированию в объеме стекла гладких треков высотой около 30 мкм с показателем преломления ниже, чем в непромодифицированной области.

Изменение показателя преломления Δn=-0.0009.

Пример 5.

Использовали образец, содержащий TeO2 73 мол. %, WO3 22 мол. %, Bi2O3 5 мол. %. Параметры записи: длительность импульса 500 фс, частота следования 180 кГц, энергия в импульсе 70 нДж, скорость движения пучка относительно образца составляла 6 мм/с. Использовали объектив с числовой апертурой NA=0.9.

Облучение приводило к формированию в объеме стекла гладких треков высотой около 30 мкм с показателем преломления ниже, чем в непромодифицированной области.

Изменение показателя преломления Δn=-0.0014.

Пример 6.

Использовали образец, содержащий TeO2 64.8 мол. %, WO3 21.6 мол. %, La2O3 3.6 мол. %, MoO3 10 мол. %. Параметры записи: длительность импульса 180 фс, частота следования 1000 кГц, энергия в импульсе 60 нДж, скорость движения пучка относительно образца составляла 20 мм/с. Использовали объектив с увеличением 100х и числовой апертурой NA=0.85.

Облучение приводило к формированию в объеме стекла треков высотой около 30 мкм с показателем преломления ниже, чем в непромодифицированной области.

Изменение показателя преломления Δn=-0.002.

Пример 7.

Использовали образец, содержащий TeO2 73 мол. %, WO3 22 мол. %, Bi2O3 5 мол. %. Параметры записи: длительность импульса 180 фс, частота следования 3 кГц, энергия в импульсе 14 нДж, скорость движения пучка относительно образца составляла 0.1 мм/с. Использовали объектив с увеличением 100х и числовой апертурой NA=0.85.

Облучение приводило к формированию в объеме стекла треков высотой 4 мкм с показателем преломления ниже, чем в непромодифицированной области.

Изменение показателя преломления Δn=-0.001.

Пример 8.

Использовали образец, содержащий TeO2 73 мол. %, WO3 22 мол. %, Bi2O3 5 мол. %. Параметры записи: длительность импульса 180 фс, частота следования 3 кГц, энергия в импульсе 200 нДж, скорость движения пучка относительно образца составляла 0.1 мм/с. Использовали объектив с увеличением 100х и числовой апертурой NA=0.85.

Облучение приводило к формированию в объеме стекла треков высотой 55 мкм с показателем преломления ниже, чем в непромодифицированной области.

Изменение показателя преломления Δn=-0.0006.

Таким образом, предлагаемое техническое решение позволяет записывать одномодовый волновод с оболочкой с пониженным показателем преломления. Дополнительными достоинствами способа являются низкая энергия воздействующего импульса и возможность модификации при высоких скоростях (больше 5 мм/с) движения пучка относительно образца.

Похожие патенты RU2647207C1

название год авторы номер документа
СПОСОБ ЛАЗЕРНОЙ ЗАПИСИ ИНТЕГРАЛЬНЫХ ВОЛНОВОДОВ 2021
  • Наумов Андрей Сергеевич
  • Лотарев Сергей Викторович
  • Липатьев Алексей Сергеевич
  • Федотов Сергей Сергеевич
  • Савинков Виталий Иванович
  • Сигаев Владимир Николаевич
RU2781465C1
СПОСОБ ПРЕЦИЗИОННОГО БЕСКЛЕЕВОГО СОЕДИНЕНИЯ ПРОЗРАЧНЫХ ДИЭЛЕКТРИКОВ С МЕТАЛЛАМИ 2021
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Федотов Сергей Сергеевич
  • Лотарев Сергей Викторович
  • Сигаев Владимир Николаевич
RU2779112C1
СПОСОБ ЛОКАЛЬНОЙ ЛАЗЕРНО-ИНДУЦИРОВАННОЙ МЕТАЛЛИЗАЦИИ ПОВЕРХНОСТИ ДИЭЛЕКТРИКА 2022
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Лотарев Сергей Викторович
  • Федотов Сергей Сергеевич
  • Стопкин Семен Иванович
  • Сигаев Владимир Николаевич
RU2790573C1
СПОСОБ ЛОКАЛЬНОЙ НАНОКРИСТАЛЛИЗАЦИИ БАРИЕВОТИТАНОСИЛИКАТНЫХ СТЕКОЛ 2016
  • Липатьев Алексей Сергеевич
  • Липатьева Татьяна Олеговна
  • Лотарев Сергей Викторович
  • Моисеев Иван Алексеевич
  • Федотов Сергей Сергеевич
  • Сигаев Владимир Николаевич
RU2640606C1
СПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА 2018
  • Ветчинников Максим Павлович
  • Шахгильдян Георгий Юрьевич
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
RU2707626C1
Способ локального бесклеевого соединения стекол со стеклокристаллическими материалами 2023
  • Федотов Сергей Сергеевич
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
RU2818355C1
СПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА ДЛЯ ЗАПИСИ ИНФОРМАЦИИ 2021
  • Липатьев Алексей Сергеевич
  • Шахгильдян Георгий Юрьевич
  • Ветчинников Максим Павлович
  • Липатьева Татьяна Олеговна
  • Лотарев Сергей Викторович
  • Сигаев Владимир Николаевич
RU2783108C1
СПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА 2016
  • Шахгильдян Георгий Юрьевич
  • Липатьев Алексей Сергеевич
  • Ветчинников Максим Павлович
  • Попова Виктория Витальевна
  • Лотарев Сергей Викторович
  • Сигаев Владимир Николаевич
RU2640836C1
СПОСОБ ЛОКАЛЬНОЙ КРИСТАЛЛИЗАЦИИ СТЕКОЛ 2015
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Ларькин Алексей Станиславович
  • Лотарев Сергей Викторович
  • Охримчук Андрей Гордеевич
  • Сигаев Владимир Николаевич
RU2616958C1
СПОСОБ ЛОКАЛЬНОЙ КРИСТАЛЛИЗАЦИИ ЛАНТАНОБОРОГЕРМАНАТНОГО СТЕКЛА 2014
  • Лотарев Сергей Викторович
  • Липатьева Татьяна Олеговна
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
  • Шааб Мария Олеговна
RU2579080C1

Иллюстрации к изобретению RU 2 647 207 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ ОДНОМОДОВОГО ВОЛНОВОДА

Изобретение относится к области лазерной обработки материалов, в частности к способу получения одномодового волновода, основанному на модификации стекла сфокусированным пучком фемтосекундных лазерных импульсов. Способ получения одномодового волновода основан на модификации показателя преломления прозрачного диэлектрика, включающий фокусировку фемтосекундных лазерных импульсов в объем диэлектрика и движение сфокусированного пучка по заданной траектории, приводящее к уменьшению показателя преломления материала в области фокусировки вдоль пути движения пучка. Последовательная запись нескольких треков пониженного показателя преломления, ограничивающих область из непромодифицированного материала, приводит к созданию одномодового волновода. При этом в качестве прозрачного диэлектрика используют теллуритное стекло, а фемтосекундный лазер генерирует на длине волны 1028 нм импульсы с частотой в интервале 1-1000 кГц длительностью 150-500 фс и с энергией 14-200 нДж, при перемещении сфокусированного объективом с числовой апертурой в диапазоне 0.3-0.9 лазерного пучка относительно стекла в скоростном интервале 0.033-20 мм/с, шаг между треками, формирующими оболочку волновода, находится в интервале 1.4-3.6 мкм. Технический результат - создание структуры с оболочкой с пониженным показателем преломления в стекле. 8 пр., 3 ил.

Формула изобретения RU 2 647 207 C1

Способ получения одномодового волновода, основанный на модификации показателя преломления прозрачного диэлектрика, включающий фокусировку фемтосекундных лазерных импульсов в объем диэлектрика и движение сфокусированного пучка по заданной траектории, приводящее к уменьшению показателя преломления материала в области фокусировки вдоль пути движения пучка, при этом последовательная запись нескольких треков пониженного показателя преломления, ограничивающих область из непромодифицированного материала, приводит к созданию одномодового волновода, отличающийся тем, что в качестве прозрачного диэлектрика используют теллуритное стекло, а фемтосекундный лазер генерирует на длине волны 1028 нм импульсы с частотой в интервале 1-1000 кГц длительностью 150-500 фс и с энергией 14-200 нДж, при перемещении сфокусированного объективом с числовой апертурой в диапазоне 0.3-0.9 лазерного пучка относительно стекла в скоростном интервале 0.033-20 мм/с, шаг между треками, формирующими оболочку волновода, находится в интервале 1.4-3.6 мкм.

Документы, цитированные в отчете о поиске Патент 2018 года RU2647207C1

СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНОГО ВОЛНОВОДА 2013
  • Костюк Галина Кирилловна
  • Сергеев Максим Михайлович
  • Заколдаев Роман Алексеевич
  • Вейко Вадим Павлович
  • Яковлев Евгений Борисович
RU2531222C1
РАДИАЦИОННО-СТОЙКИЙ СВЕТОВОД ДЛЯ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА 2010
  • Курбатов Александр Михайлович
  • Курбатов Роман Александрович
RU2472188C2
US 7132223 B2, 07.11.2006
WO 1997041076 A1, 06.11.1997.

RU 2 647 207 C1

Авторы

Смаев Михаил Петрович

Охримчук Андрей Гордеевич

Дорофеев Виталий Витальевич

Даты

2018-03-14Публикация

2016-12-23Подача