ОПТИЧЕСКИЙ ГЕНЕРАТОР РАВНОМЕРНО РАСПРЕДЕЛЕННЫХ ХАОТИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Российский патент 2000 года по МПК G06F3/00 

Описание патента на изобретение RU2150140C1

Изобретение относится к специализированной вычислительной технике и может быть использовано при статистическом моделировании, создании оптических средств обработки информации и т.д.

Известны генераторы случайного процесса, обеспечивающие при формировании случайных величин заданный закон распределения с различной степенью приближения // А.С. N 1170454, кл. G 06 F 7/58, СССР, А.С. N 1317435, кл. G 06 F 7/58, СССР, А. С. N 1509884, кл. G 06 F 7/58, СССР). Наиболее близким по техническому исполнению к предложенному устройству является стохастический фильтр, описанный в патенте РФ N 2050581.

Недостатком данных устройств является отсутствие возможности обеспечения высокоточного приближения закона распределения выходной последовательности к равномерному.

Заявленное изобретение направлено на решение задачи формирования хаотического процесса с равномерным законом распределения.

Поставленная задача возникает при моделировании сложных систем, анализе выходных сигналов систем большой размерности, разработке перспективных средств обработки информации и т.д.

Сущность изобретения состоит в том, что в него введены оптический разветвитель, электрооптический амплитудный модулятор, два оптических фазовых модулятора, оптический усилитель и оптический Y-разветвитель, выход источника излучения через три оптических разветвления оптического разветвителя подключен ко входу оптического Y-разветвителя, входу оптического усилителя и информационному входу электрооптического амплитудного модулятора, управляющий вход которого объединен со входом устройства, а выход подключен через первый оптический волновод ко входу первого оптического фазового модулятора, выход которого подключен ко входу второго оптического волновода, выход которого объединен с выходом второго оптического разветвления оптического разветвителя и подключен ко входу оптического усилителя, выход которого через второй оптический фазовый модулятор подключен ко входу оптического Y-разветвителя, второе оптическое разветвление которого объединено по выходу с первым оптическим волноводом, а выход первого оптического разветвления является выходом устройства.

В основу работы генератора положено свойство функционального отображения вида

xn∈[0,1], n - номер шага отображения,
порождать при итерировании хаотическую равномерно распределенную последовательность случайных величин [Шустер Г. Детерминированный хаос. - М.: Мир, 1988 г., с.33,38].

Сущность изобретения поясняется фиг. 1, где представлена функциональная схема устройства.

Устройство содержит источник когерентного излучения 1, оптический разветвитель 2 с оптическими разветвлениями 21 - 23, электрооптический амплитудный модулятор (ЭАМ) 3, первый оптический волновод 4, два оптических фазовых модулятора 51, 52, второй оптический волновод 6, оптический усилитель (ОУ) 7, оптический Y-разветвитель 8 с оптическими разветвлениями 81, 82.

Оптические фазовые модуляторы 51, 52 обеспечивают сдвиг фазы когерентного оптического потока на π и могут быть выполнены в виде оптически прозрачных пластин заданной толщины.

Выход источника излучения 1 подключен ко входу оптического разветвителя 2, выход первого оптического разветвления 21 которого подключен ко входу оптического Y- разветвителя 8, выход второго оптического разветвления 22 - ко входу ОУ 7, выход третьего оптического разветвления 23 - к информационному входу ЭАМ 3.

Управляющий вход ЭАМ 3 объединен со входом устройства, а выход подключен ко входу первого оптического волновода 4, выход которого через первый оптический фазовый модулятор 51 подключен ко входу второго оптического волновода 6, выход которого объединен с выходом второго оптического разветвления 22 и подключен ко входу ОУ 7. Выход ОУ 7 через второй оптический фазовый модулятор 52 подключен ко входу оптического Y-разветвителя 8, выход второго оптического разветвления 82 которого объединен с выходом первого оптического волновода 4 и подключен ко входу первого оптического фазового модулятора 51, а выход первого оптического разветвления 81 является выходом устройства
Устройство работает следующим образом.

В течение всего времени работы устройства с выхода источника излучения 1 снимается когерентный оптический поток с интенсивностью усл(овных) ед(иниц), который за счет конструктивного исполнения оптических разветвлений оптического разветвителя 2 разделяется на три неравных по интенсивности оптических потока - первый (с интенсивностью 2 усл.ед.), поступающий на вход первого оптического разветвления 21, второй - с интенсивностью усл.ед., поступающий по второму оптическому разветвлению 22 на вход оптического усилителя (ОУ) 7 с коэффициентом усиления по амплитуде равным , и третий - с единичной интенсивностью, поступающий по третьему оптическому разветвлению 23 на информационный вход электрооптического амплитудного модулятора (ЭАМ) 3. При отсутствии входного (стартового) сигнала, на выходе устройства (в соответствии с описанным далее алгоритмом его работы) формируется нулевой сигнал. Для начала работы устройства с его входа на управляющий вход ЭАМ 3 подается импульсный сигнал, пропорциональный X0 (где X0 - начальное значение хаотической последовательности), обеспечивающий формирование на входе первого оптического волновода 4 оптического импульса с амплитудой X0. После прохождения данного оптического сигнала через первый оптический волновод 4 и первый оптический фазовый модулятор 51, обеспечивающий сдвиг фазы потока на π, он поступает по второму оптическому волноводу 6 на вход ОУ 7, где интерферирует с когерентным оптическим потоком интенсивности усл. ед. (амплитуды усл.ед.), поступающим с выхода второго оптического разветвления 22. Результирующий сигнал с амплитудой усл.ед. через ОУ 7 (где усиливается по амплитуде в раз) и второй оптический фазовый модулятор 52 (где происходит сдвиг фазы потока на π) поступает на вход оптического Y-разветвителя 8, где интерферирует с когерентным оптическим сигналом интенсивности 2 усл. ед., поступающим с выхода первого оптического разветвления 21.

Сформированный в результате интерференции оптический сигнал с амплитудой усл. ед. (интенсивностью усл.ед.) разветвляется в оптическом Y-разветвителе 8 на два сигнала с амплитудами усл. ед., поступающие по первому оптическому разветвлению 81 на выход устройства и по второму 82 - на вход первого оптического фазового модулятора 51. После прохождения оптическим сигналом первого оптического фазового модулятора 51 работа устройства повторяется аналогично вышеизложенному - на выходе устройства формируется последовательность оптических сигналов (с амплитудами усл. ед. на n-м шаге работы устройства), представляющих собой эргодичную хаотическую последовательность с равномерной на [0,1] плотностью распределения.

Похожие патенты RU2150140C1

название год авторы номер документа
ОПТИЧЕСКИЙ ГЕНЕРАТОР ХАОТИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ 2001
  • Соколов С.В.
  • Шевчук П.С.
  • Ганеев М.Р.
  • Вороной Д.А.
  • Момот А.В.
RU2190872C1
ОПТИЧЕСКИЙ ГЕНЕРАТОР ХАОТИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ 1999
  • Соколов С.В.
  • Ганеев М.Р.
RU2150734C1
ОПТИЧЕСКИЙ ДИФФЕРЕНЦИАТОР 1999
  • Соколов С.В.
  • Шевчук П.С.
  • Момот А.В.
  • Ганеев М.Р.
RU2159461C1
ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ КОДОВ 2000
  • Соколов С.В.
  • Парамонов Ю.Ю.
RU2177164C1
ОПТИЧЕСКИЙ ТРИГГЕР 1999
  • Соколов С.В.
  • Парамонов Ю.Ю.
  • Ганеев М.Р.
RU2170945C1
ОПТИЧЕСКИЙ МОДУЛЯТОР 1995
  • Баранник А.А.
  • Соколов С.В.
RU2103823C1
ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ КОДОВ 1999
  • Соколов С.В.
  • Парамонов Ю.Ю.
RU2163725C1
МАГНИТООПТИЧЕСКИЙ ОРИЕНТАТОР 2000
  • Оленев С.А.
  • Соколов С.В.
  • Ганеев М.Р.
RU2167395C1
ОПТИЧЕСКИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ 2000
  • Соколов С.В.
  • Щербань И.В.
  • Цибриенко В.В.
RU2177165C1
ОПТОЭЛЕКТРОННОЕ ВЫЧИСЛИТЕЛЬНОЕ УСТРОЙСТВО 1999
  • Соколов С.В.
  • Ганеев М.Р.
  • Панасенко В.В.
  • Половинчук В.Н.
RU2152070C1

Реферат патента 2000 года ОПТИЧЕСКИЙ ГЕНЕРАТОР РАВНОМЕРНО РАСПРЕДЕЛЕННЫХ ХАОТИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Изобретение относится к специализированной вычислительной технике и может быть использовано при статистическом моделировании, создании оптических средств обработки информации и т.д.. Техническим результатом является возможность формирования хаотического процесса с равномерным законом распределения. Для этого оптический генератор содержит источник излучения, оптические разветвители, электрооптический модулятор, оптические волноводы, оптические фазовые модуляторы, оптический усилитель. 1 ил.

Формула изобретения RU 2 150 140 C1

Оптический генератор равномерно распределенных хаотических последовательностей, содержащий первый и второй оптические волноводы, источник излучения, выход которого подключен ко входу оптического разветвителя, оптический усилитель, электрооптический амплитудный модулятор, отличающийся тем, что в него введены два оптических фазовых модулятора и оптический Y-разветвитель, выход первого оптического разветвления оптического разветвителя подключен ко входу оптического Y-разветвителя, выход второго оптического разветвления оптического разветвителя подключен ко входу оптического усилителя, выход третьего оптического разветвления оптического разветвителя подключен к информационному входу электрооптического амплитудного модулятора, управляющий вход которого объединен со входом упомянутого оптического генератора, а выход подключен через первый оптический волновод ко входу первого оптического фазового модулятора, выход которого подключен ко входу второго оптического волновода, выход которого объединен с выходом второго оптического разветвления оптического разветвителя, выход оптического усилителя через второй оптический фазовый модулятор подключен ко входу оптического Y-разветвителя, второе оптическое разветвление которого объединено по выходу с первым оптическим волноводом, а выход первого оптического разветвления является выходом упомянутого оптического генератора.

Документы, цитированные в отчете о поиске Патент 2000 года RU2150140C1

СТОХАСТИЧЕСКИЙ ФИЛЬТР 1992
  • Соколов С.В.
  • Павленко П.П.
RU2050581C1
US 5381362 A, 10.01.1995
US 5251052 A, 05.10.1993
Функциональный генератор 1988
  • Аникин Виктор Яковлевич
  • Комирный Геннадий Алексеевич
  • Мололин Анатолий Александрович
  • Ткаченко Игорь Евдокимович
SU1596316A1
Генератор случайных чисел 1984
  • Соколов Василий Васильевич
  • Квашнин Анатолий Александрович
SU1170454A1
Генератор случайного процесса 1985
  • Соколов Сергей Викторович
  • Назарьев Андрей Викторович
SU1317435A1
Генератор случайного процесса 1988
  • Соколов Сергей Викторович
SU1509884A1

RU 2 150 140 C1

Авторы

Соколов С.В.

Ганеев М.Р.

Панасенко В.В.

Даты

2000-05-27Публикация

1999-03-10Подача