Изобретение относится к технике гидродинамической очистки поверхностей подводных сооружений, в частности внешних поверхностей корпусов судов, находящихся на плаву, от ржавчины, обрастаний и различных наслоений. Изобретение может быть использовано для очистки поверхностей различного рода изделий, которые могут быть погружены в жидкость и обработаны в ней струей жидкости с совместным использованием динамического и кавитационного эффектов струи.
Известно, что совместное использование динамического и кавитационного эффектов обрабатывающей струи в некоторых случаях повышает производительность очистки в 10 и более раз [1,2]. Объясняется это резкими скачками давления (гидростатическими ударами), сопровождающими процесс схлопывания кавитационных пузырьков.
Изобретения в этой области в основном направлены на разработку конструкций сопел и разного рода насадок, позволяющих увеличить число образующихся в рабочей жидкости (в обрабатывающей струе) кавитирующих пузырьков (полостей), получить более равномерное их распределение по сечению струи, уменьшить расстояние между схлопывающимися пузырьками и очищаемой поверхностью [3,4].
Известен способ создания кавитирующей струи жидкости, используемой для очистки твердых поверхностей, путем нагнетания ее под давлением через сопло-кавитатор, в соответствии с которым под углом к высоконапорной кавитирующей струе, вытекающей из сопла, подают кольцевой поток воды, который способствует созданию затопленности струйного потока и развитию в нем кавитации [5] . Данный способ является наиболее близким к предложенному с точки зрения использования технического приема, заключающегося в дополнительном воздействии на кавитирующую струю с целью усиления кавитирующего эффекта.
Общим недостатком как аналогов, так и прототипа является то, что канал сопла-кавитатора создает ощутимое гидродинамическое сопротивление прокачиваемой по нему жидкости за счет турбулентного трения о его поверхность. Это снижает экономичность и производительность очистки поверхности ввиду непроизводительных потерь мощности насоса и кавитирующей струи жидкости.
Достигаемый от настоящего изобретения результат заключается в снижении уровня турбулентности жидкости при прохождении от насоса до среза сопла, приводящий к уменьшению сопротивления напора и/или к повышению скорости жидкости на выходе (срезе) сопла. Уменьшение гидродинамического сопротивления при прокачке жидкости через сопло позволяет уменьшить мощность и/или давление подающего насоса. Другой технический результат состоит в том, что выходящая из сопла струя является более устойчивой от размывания (дробления) окружающей ее жидкостью, вследствие чего увеличивается площадь поверхности, на которой проявляется чистящий эффект. Третий технический результат заключается в улучшении качества очистки обрабатываемой поверхности за счет более легкой отделяемости частиц отложений от поверхности.
Общим с прототипом признаком является нагнетание жидкости под давлением через сопло-кавитатор.
Отличие заключается в том, что осуществляют физико-химическую модификацию свойств рабочей жидкости, например воды, путем добавления в нее взвешенных веществ и/или хорошо растворимых высокомолекулярных полимеров, например полимера полиоксиэтилена. Отличие состоит также в выборе полиоксиэтилена с молекулярной массой 105 - 107, расходуемого с концентрацией 10-6 - 10-4 кг/кг. В преимущественном варианте полимер подается в пристеночную область сопла. Предусмотрены, как варианты, подача полимера (полимеров) на входе сопла-кавитатора через несколько каналов, выполненных в его корпусе и равномерно расположенных по поперечному сечению сопла-кавитатора, или в двух или более поперечных сечениях.
Изобретение поясняется чертежом, где дан продольный разрез сопла-кавитатора.
Способ создания кавитирующей струи жидкости осуществляют следующим образом. Жидкость, например, воду под давлением нагнетают в направлении к обрабатываемой поверхности 1 через сопло-кавитатор 2. На входе сопла в рабочую жидкость добавляют вышеупомянутое вещество, воздействующее на структуру течения жидкости. Таким образом, в сопле-кавитаторе достигается уменьшение сопротивления напора и/или повышение скорости жидкости на выходе (срезе) сопла.
Известно, что на структуру течения воздействуют переносимые им взвешенные частицы, а также такие растворенные вещества, как некоторые высокомолекулярные полимеры. Взвешенные частицы, например глины, влияют на структуру потока, и в частности на уровень турбулентных пульсаций, при условии, что они создают в потоке значительный градиент плотности, например, в пристеночной области потока. Поэтому для получения заметного эффекта в снижении потерь и повышения производительности требуется подача большого количества "раствора" глины или другой взвеси при условии обеспечения роста его концентрации вдоль сопла. В то же время высокомолекулярные, но хорошо растворимые в воде линейные полимеры с молекулярной массой более 104 влияют на структуру потока при гораздо меньших концентрациях. Это могут быть полиоксиэтилен, полиакриламид или некоторые полимеры биологического происхождения. Например, полиоксиэтилен с молекулярной массой порядка 106 уже при концентрации полимера примерно 10-5 кг/кг обладает способностью препятствовать развитию микроскопических зародышей турбулентных вихрей и тем самым поддерживать ламинарное движение частиц воды при высоких числах Рейнольдса. В результате гасятся турбулентные пульсации скорости в текущей воде, и гидродинамическое сопротивление понижается на 15-30%.
Выбор добавляемого вещества или полимера, его молекулярной массы и концентрации определяется экономической эффективностью, например, полимер с большей молекулярной массой (длиной полимерной цепи) более эффективно гасит турбулентные пульсации скорости и позволяет использовать более низкие рабочие концентрации его, но он, как правило, более дорог в производстве и менее стабилен.
Экономное (в 10-100 раз) расходование добавляемого полимера обеспечивается тем, что повышенная концентрация полимера (10-3 - 104 кг/кг) подается только в пристеночную область сопла, наиболее эффективно гася турбулентность и понижая гидродинамическое сопротивление. Для этого служат каналы 3, выполненные на входе сопла в его корпусе, равномерно расположенные по поперечному сечению сопла-кавитатора. Для поддержания необходимой концентрации полимера вдоль всей длины сопла при высоких скоростях потока его подача может производиться в двух или более поперечных сечениях сопла-кавитатора. На чертеже изображен вариант, по которому предусмотрены дополнительные каналы 4, выполненные ближе к выходу (срезу) сопла-кавитатора для обеспечения одинаковых свойств пристеночного слоя жидкости.
Предлагаемый способ создания активно кавитирующей струи жидкости в отличие от существующих снижает энергетические затраты. Кроме того достигаются следующие технические результаты:
выходящая из сопла струя становится более устойчивой от размывания окружающей жидкостью, вследствие чего появляется свобода в выборе расстояния и угла наклона сопла к обрабатываемой поверхности для увеличения производительности;
жидкость (вода) с добавкой высокомолекулярного линейного полимера приобретает способность к более быстрому проникновению в новые, возникающие в процессе очистки микропоры, тем самым облегчая и ускоряя отделение отложений от очищаемой поверхности.
Источники информации
1. SU, авторское свидетельство N 1102712, В 63 В 59/08, 1982.
2. RU, патент N 2094121, В 03 В 1/00, 1997.
3. RU, патент N 2095274, В 63 В 59/00, 1997.
4. US, патент N 4497664, B 08 B 3/02, 1983.
5. RU, патент N 2072937, В 63 В 69/08, 59/06, 1997.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ПОГРУЖЕННЫХ В ЖИДКОСТЬ ПОВЕРХНОСТЕЙ | 1999 |
|
RU2152331C1 |
СПОСОБ СОЗДАНИЯ КАВИТИРУЮЩИХ СТРУЙ ДЛЯ ОБРАБОТКИ ПОГРУЖЕННЫХ В ЖИДКОСТЬ ПОВЕРХНОСТЕЙ | 2003 |
|
RU2271300C2 |
СПОСОБ СОЗДАНИЯ КАВИТАЦИИ В СТРУЕ ЖИДКОСТИ | 1999 |
|
RU2155105C1 |
СПОСОБ ОЧИСТКИ ТВЕРДОЙ ПОВЕРХНОСТИ И МОЮЩИЙ СОСТАВ, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ ИСПОЛЬЗОВАНИЯ В СПОСОБЕ | 2013 |
|
RU2540607C2 |
ИНСТРУМЕНТ ДЛЯ ПОДВОДНОЙ ОЧИСТКИ ПОВЕРХНОСТИ И СОПЛО ДЛЯ ИНСТРУМЕНТА | 2000 |
|
RU2163877C1 |
СПОСОБ ОЧИСТКИ И ВОССТАНОВЛЕНИЯ РАБОТОСПОСОБНОСТИ СКВАЖИН И ТРУБОПРОВОДОВ | 2014 |
|
RU2557283C1 |
СПОСОБ ГИДРОКАВИТАЦИОННОЙ ОЧИСТКИ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2524603C2 |
СПОСОБ РОДИОНОВА В.П. ГИДРОДИНАМИЧЕСКОЙ ОЧИСТКИ ПОВЕРХНОСТИ | 2016 |
|
RU2635232C1 |
Устройство для создания газожидкостного потока, способ и система для растворения газа в жидкости | 2023 |
|
RU2814349C1 |
УСТРОЙСТВО ДЛЯ ГИДРОКАВИТАЦИОННОЙ ОЧИСТКИ ПОВЕРХНОСТЕЙ ПОД ВОДОЙ | 2013 |
|
RU2522793C1 |
Изобретение относится к технологии гидродинамической очистки поверхностей и, в частности, может быть использовано для очистки подводных сооружений, например внешних поверхностей корпусов судов, находящихся на плаву, от ржавчины, обрастаний и различных наслоений. Изобретение основано на совместном использовании динамического и кавитационного эффектов. Способ заключается в нагнетании жидкости под давлением через сопло-кавитатор. При этом осуществляют физико-химическую модификацию свойств жидкости путем добавления в нее взвешенных частиц и/или хорошо растворимых в ней высокомолекулярных полимеров. В качестве вещества-модификатора может использоваться высокомолекулярный линейный полимер, например, в виде полиоксиэтилена с молекулярной массой 105 - 107 и с концентрацией 10-6 - 10-4 кг/кг. В качестве жидкости могут использовать воду. Полимер могут подавать на входе сопла-кавитатора в пристеночную область через каналы, выполненные в его корпусе и равномерно расположенные по поперечному сечению сопла-кавитатора. Технический результат реализации изобретения заключается в повышении качества очистки, а также в повышении ее производительности и экономичности. 5 з.п.ф-лы. 1 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ очистки корпуса судна и устройство для его осуществления | 1988 |
|
SU1659290A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ гидродинамической подводной очистки корпусов судов | 1982 |
|
SU1102712A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Зачистной док | 1989 |
|
SU1682234A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
US 4716849 A, 05.01.1988. |
Авторы
Даты
2000-08-27—Публикация
1999-03-25—Подача