Изобретение относится к теплоэнергетике для нагрева жидкости, а также для гидродинамической интенсификации технологических процессов в дисперсных системах и стерилизации жидких сред.
Известный гидродинамический теплогенератор (патент RU 2054604 C1) содержит ряд последовательно работающих центробежных насосов, размещенных в одном корпусе, являющихся гидродинамическими излучателями ультразвука, работающими на принципе ультразвуковой сирены. Генераторами ультразвука являются коаксиальные подвижные и неподвижные перфорированные кольца. Указанный теплогенератор обеспечивает выработку тепла, превышающую затраты электроэнергии на привод в несколько раз. Недостатком устройства является сложность изготовления, высокая стоимость и повышенная кавитационная эрозия деталей теплогенератора.
Наиболее близким техническим решением к предлагаемому теплогенератору является теплогенератор струйного действия (RU 2096694). Теплогенератор содержит соосно установленные входное сопло и выходной патрубок, камеру смешения горячего и холодного потоков, торообразный резонатор (камеру нагрева).
Недостатком данной конструкции является низкая эффективность преобразования кинетической энергии струи жидкости в тепло, т.к. часть потока поступающей жидкости проходит транзитом, минует резонансную камеру нагрева, другая ее часть, менее 50%, поступает в нагревательную камеру, где после нагрева смешивается с прямым потоком исходной воды и поступает к потребителю.
Целью предлагаемой конструкции является повышение коэффициента преобразования механической энергии потока жидкости в тепло путем ступенчатой кавитации движущегося потока.
Поставленная цель достигается тем, что гидродинамический теплогенератор, содержащий корпус, входное сопло, выходное отверстие нагретой жидкости, камеру торможения струй жидкости и резонансную камеру, соединенные кольцевым проемом, снабжен дополнительным входным соплом и диффузорными насадками, установленными на выходе входных сопел, последние установлены соосно навстречу друг другу, кольцевой проем выполнен в виде сужающейся и переходящей в месте сопряжения с резонансной камерой расширяющейся щели, а выходное отверстие нагретой жидкости соединено с резонансной камерой.
На чертеже представлен разрез предлагаемого гидродинамического теплогенератора, содержащего корпус 1, в котором размещены камеры резонатора 4 и торможения струй 5, соединенных полостью 9, входные сопла 2, расширяющиеся насадки 3, завихрители потока 6 на выходной части сопла 2, уплотнительная прокладка 7 с острой кромкой и сливной канал нагретой воды 8.
Теплогенератор работает следующим образом. Жидкость стандартным насосом подается во входные сопла 2 и через расширительные диффузорные насадки 3 встречными соосными струями со скоростью 30-40 м/сек - в камеру торможения струй 5. Благодаря центральному удару при встрече струй возникает гидравлический удар, имеющий волновой характер с максимальной амплитудой давления для указанных выше скоростей истечения из сопел, равной 300-450 кг/см2, что обеспечивает высокую скорость захлопывания кавитационных пузырьков, образовавшихся вследствие снижения статического давления в жидкости до значения ниже давления парообразования при температуре кавитируемой жидкости. Для исключения эрозионного воздействия кавитации на сопла в выходной части установлены завихрители потоков, смещающие кавитационные пузырьки в приосевую зону сопла.
В плоскости взаимодействия встречных струй в камере торможения 5 происходит их торможение и поворот в сторону резонансной камеры 4. Жидкость проходит вторую ступень кавитации, поступая в резонансную камеру 4 через сужающуюся кольцевую щель, переходящую в месте сопряжения с полостью резонатора 4 в расширяющуюся щель 9. Резонансная камера 4 является третьей ступенью кавитации, где благодаря отклонению струи острой кромкой прокладки 7 возникает автоколебательный процесс, частота которого настраивается в резонанс собственной частотой резонатора изменением диаметра и напора струи. Нагретая жидкость через канал 8 отводится к потребителю.
Устройство отличается малым весом, компактностью, простотой конструкции, отсутствием подвижных частей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ГИДРОДИНАМИЧЕСКОГО НАГРЕВА ЖИДКОСТИ | 1999 |
|
RU2156412C1 |
ГИДРОДИНАМИЧЕСКИЙ ТЕПЛОГЕНЕРАТОР | 2002 |
|
RU2247906C2 |
РОТОРНЫЙ ГИДРОУДАРНЫЙ НАСОС-ТЕПЛОГЕНЕРАТОР | 2001 |
|
RU2202743C2 |
СПОСОБ ВЫДЕЛЕНИЯ ЭНЕРГИИ ПОСРЕДСТВОМ ВРАЩАТЕЛЬНО-ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ И ВЫДЕЛЕНИЯ ЭНЕРГИИ В ЖИДКИХ СРЕДАХ | 2005 |
|
RU2287118C1 |
УСТРОЙСТВО ДИСПЕРГИРОВАНИЯ СУСПЕНЗИЙ | 2003 |
|
RU2275965C2 |
ЭЛЕКТРОНАСОС ЦЕНТРОБЕЖНЫЙ ГЕРМЕТИЧНЫЙ - ТЕПЛОГЕНЕРАТОР | 2011 |
|
RU2495337C2 |
СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2124550C1 |
СПОСОБ ГИДРОДИНАМИЧЕСКОЙ ОЧИСТКИ ПОВЕРХНОСТЕЙ ОБЪЕКТОВ ПОД ВОДОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2376193C1 |
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ТЕКУЧЕЙ СРЕДЫ | 2006 |
|
RU2309006C1 |
ГАЗОСТРУЙНЫЙ АКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ | 2007 |
|
RU2350843C1 |
Изобретение предназначено для использования в энергетике как источник теплоснабжения, а также для гидродинамической интенсификации технологических процессов в дисперсных системах и кавитационной стерилизации жидких сред. В описываемом теплогенераторе достигается ступенчатая кавитация обрабатываемого потока жидкости с разгоном ее в конических сужающихся соосных, встречно-направленных соплах до скорости 30 - 40 м/с, закручивание струи и снижение давления в выходной части сопла ниже давления парообразования при температуре обрабатываемой жидкости, с последующим завихрением струи в выходном диффузорном насадке и ударным торможением при их встречном взаимодействии. В результате взаимодействия струй поток разворачивается в пределах 90° и по соединительной сужающейся кольцевой плоскости подается в резонатор, где поток жидкости проходит дополнительную обработку ультразвуком, нагревается и подается потребителю. Устройство отличается малым весом, компактностью, высокой надежностью из-за отсутствия подвижных частей, простотой изготовления. 1 ил.
Гидродинамический теплогенератор, содержащий корпус, входное сопло, выходное отверстие нагретой жидкости, камеру торможения струй жидкости и резонансную камеру, соединенные кольцевым проемом, отличающийся тем, что он снабжен дополнительным входным соплом и диффузорными насадками, установленными на выходе входных сопел, последние установлены соосно навстречу друг другу, кольцевой проем выполнен в виде сужающейся и переходящей в месте сопряжения с резонансной камерой расширяющейся щели, а выходное отверстие нагретой жидкости соединено с резонансной камерой.
ТЕПЛОГЕНЕРАТОР СТРУЙНОГО ДЕЙСТВИЯ "ТОР" | 1995 |
|
RU2096694C1 |
ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС | 1994 |
|
RU2064604C1 |
SU 1790724 A3, 23.01.1993 | |||
Способ нагрева газа | 1982 |
|
SU1071922A2 |
Подогреватель газа | 1990 |
|
SU1815534A1 |
Авторы
Даты
2001-04-27—Публикация
1999-04-21—Подача