Изобретение относится к области измерительной техники, а именно к компенсационным преобразователям линейного ускорения с электростатическим обратным преобразователем.
Известен компенсационный акселерометр, содержащий первую пластину с подвижным элементом, неподвижным элементом и соединяющим их упругим шарниром, вторую и третью пластины, дифференциальный емкостной преобразователь положения подвижного элемента с неподвижными электродами на второй и третьей пластинах, электростатический обратный преобразователь с неподвижными электродами на второй и третьей пластинах, усилитель [1].
Такой компенсационный акселерометр имеет ограничение по верхнему пределу диапазона измеряемых ускорений вследствие того, что лимитируется компенсационная сила, так как на одних и тех же пластинах расположены неподвижные электроды дифференциального емкостного преобразователя и электростатического обратного преобразователя.
Наиболее близким по технической сущности является компенсационный акселерометр [2] , содержащий первую пластину из монокристаллического материала, неподвижный элемент, подвижный элемент в виде консоли с электропроводной поверхностью и соединяющий их упругий шарнир, вторую и третью пластины, дифференциальный емкостной преобразователь с неподвижными электродами на второй и третьей пластинах, генератор переменного тока, усилитель с двумя противофазными выходами, к которым подключены неподвижные электроды. Каждый неподвижный электрод выполнен из нескольких прямоугольных частей, подключаемых к выходам усилителя в зависимости от диапазона измерений без изменения основных конструктивных элементов акселерометра.
Недостатком такого компенсационного акселерометра является пониженная устойчивость к воздействию ускорений, направление которых перпендикулярно направлению измеряемого ускорения, вследствие недостаточной жесткости упругого шарнира в направлениях, отличных от направления измеряемого ускорения.
Техническим результатом данного изобретения является повышение устойчивости компенсационного акселерометра к воздействию ускорений, направление которых не совпадает с направлением измеряемого ускорения, а также повышение диапазона измеряемых ускорений.
Данный технический результат достигается в компенсационном акселерометре, содержащем первую пластину из монокристаллического материала, например кремния, в которой образованы подвижный элемент, неподвижный элемент, вторую и третью пластины, дифференциальный емкостный преобразователь, двухфазный генератор напряжения переменного тока, источник опорного напряжения постоянного тока, усилитель, состоящий из усилителя переменного тока, фазового детектора и усилителя постоянного тока с двумя противофазными выходами, причем на второй пластине расположен один из неподвижных электродов дифференциального емкостного преобразователя, на третьей пластине расположен второй неподвижный электрод дифференциального емкостного преобразователя, первая пластина между второй и третьей пластинами с зазором с каждой стороны между подвижным элементом и неподвижными электродами на соответствующей пластине, каждый неподвижный электрод дифференциального емкостного преобразователя на второй и третьей пластинах подсоединен к одному из выходов генератора напряжения переменного тока и одному из противофазных выходов усилителя постоянного тока, отличающимся тем, что подвижный элемент первой пластины выполнен как единый чувствительный элемент консольной конструкции, совмещающий подвижный элемент и упругий шарнир, роль которого выполняет сам подвижный элемент за счет собственной упругости, с одинаковой толщиной по всей длине и всей ширине консоли чувствительного элемента; подвижный электрод дифференциального емкостного преобразователя выполнен в виде электропроводной поверхности чувствительного элемента, подвижный электрод на чувствительном элементе подключен к источнику опорного напряжения постоянного тока и к входу усилителя переменного тока, каждый из неподвижных электродов дифференциального емкостного преобразователя выполнен с расположением по длине консоли чувствительного элемента от границы между чувствительным элементом и неподвижным элементом первой пластина до свободного конца консоли чувствительного элемента или далее, компенсационный акселерометр выполнен с верхним пределом aм диапазона измеряемых ускорений, определяемым соотношением:
где k1 - коэффициент;
ε - относительная диэлектрическая проницаемость среды между чувствительным элементом и неподвижными электродами на второй и третьей пластинах;
Uo - напряжение источника опорного напряжения;
Uм - максимальное выходное напряжение с каждого выхода усилителя постоянного тока;
d - зазор между каждым неподвижным электродом дифференциального емкостного преобразователя и чувствительным элементом;
δ - толщина чувствительного элемента;
где ε абсолютная диэлектрическая проницаемость;
ρ - плотность материала чувствительного элемента;
длина l чувствительного элемента выполнена не менее величины, определяемой в соответствии с соотношением:
где k2 - коэффициент;
где E - модуль упругости первого рода материала чувствительного элемента;
g - ускорение свободного падения.
В одном частном случае в компенсационном акселерометре неподвижный элемент первой пластины выполнен одинаковой толщины с чувствительным элементом.
В другом частном случае в компенсационном акселерометре чувствительный элемент выполнен с шириной консоли, равной или большей длины консоли.
Путем выполнения подвижного элемента первой пластины единым чувствительным элементом консольной конструкции, совмещающим подвижный элемент и упругий шарнир, с одинаковой толщиной по всей длине и ширине консоли чувствительного элемента, повышается жесткость консоли чувствительного элемента в направлении оси изгиба чувствительного элемента пропорционально третьей степени отношения ширины консоли чувствительного элемента к суммарной ширине упругих перемычек по сравнению с прототипом. Поэтому повышается устойчивость чувствительного элемента компенсационного акселерометра к воздействию ускорений, направленных вдоль оси чувствительного элемента.
Посредством выполнения подвижного элемента первой пластины единым чувствительным элементом консольной конструкции, совмещающим подвижный элемент и упругий шарнир, выполнения подвижного электрода дифференциального емкостного преобразователя в виде электропроводной поверхности чувствительного элемента, подключения подвижного электрода на чувствительном элементе к источнику опорного напряжения постоянного тока и к входу усилителя переменного тока, выполнения каждого из неподвижных электродов дифференциального емкостного преобразователя с расположением по длине консоли чувствительного элемента от границы между чувствительным элементом и неподвижным элементом первой пластины до свободного конца консоли чувствительного элемента в следящей системе компенсационного акселерометра, обеспечивается большая жесткость чувствительного элемента в направлении вдоль длины консоли по всей длине чувствительного элемента, так как наличие электростатических сил по всей площади чувствительного элемента, перпендикулярных поверхности чувствительного элемента, препятствует деформации чувствительного элемента вдоль длины консоли. В результате повышается устойчивость компенсационного акселерометра к ускорениям, направленным вдоль длины консоли.
Путем выполнения чувствительного элемента, совмещающего подвижный элемент и упругий шарнир, с одинаковой толщиной по всей длине и ширине, выполнения подвижного электрода как электропроводной поверхности чувствительного элемента, расположения неподвижных электродов по всей длине чувствительного элемента, обеспечивается повышенная жесткость чувствительного элемента в следящей системе компенсационного акселерометра вдоль измерительной оси компенсационного акселерометра.
При повышенной жесткости чувствительного элемента по всем трем осям появляется возможность выполнения чувствительного элемента толщиной в несколько микрометров. При выполнении толщины чувствительного элемента в несколько микрометров, зазора между чувствительным элементом и неподвижным электродом в несколько микрометров, напряжения опорного источника и выходного напряжения усилителя постоянного тока до 10 В в соответствии с выражением для верхнего предела ам измеряемого ускорения достигается повышение верхнего предела до 10000 м/с2 более независимо от длины и ширины консоли чувствительного элемента.
При выполнении длины l консоли чувствительного элемента в соответствии с расчетным соотношением повышается порог чувствительности компенсационного акселерометра, в результате чего увеличивается диапазон измеряемых ускорений.
На фиг. 1 представлен общий вид компенсационного акселерометра, на фиг. 2 - первая пластина, на фиг. 3 - третья пластина, на фиг. 4 - электрическая схема компенсационного акселерометра.
Компенсационный акселерометр (фиг. 1) содержит корпус 1, в котором установлены первая пластина 2 с единым чувствительным элементом 3 консольного типа, совмещающим подвижный элемент и упругий шарнир, и неподвижным элементом 4, вторая пластина 5 с неподвижным электродом 6 дифференциального емкостного преобразователя и третья пластина 7 с неподвижным электродом 8.
Первая пластина 2 выполнена из монокристаллического кремния и поверхности ее чувствительного элемента 3, обращенные к второй пластине 5 и третьей пластине 7, выполнены электропроводными путем, например применением легирования бором.
Между каждой поверхностью чувствительного элемента 3 и второй пластиной 5 и третьей пластиной 7 образован зазор d путем, например, напыления слоя 9 электроизоляционного материала на вторую пластину 5 и на третью пластину 7.
Консоль длиной l чувствительного элемента 3 образована от границы между неподвижным элементом 4 и чувствительным элементом 3 в месте защемления неподвижного элемента 4 между электроизоляционными слоями 9 на второй пластине 5 и третьей пластине 7 до свободного конца консоли чувствительного элемента 3.
Неподвижный электрод 6 и неподвижный электрод 8 дифференциального емкостного преобразователя расположены по всей длине консоли чувствительного элемента 3 от границы между неподвижным элементом 4 первой пластины 2 и чувствительным элементом 3 до свободного конца консоли чувствительного элемента 3.
Чувствительный элемент 3 выполнен с одинаковой толщиной d по всей его длине l и ширине b (фиг. 2).
Ось изгиба О-О чувствительного элемента 3 расположена на границе чувствительного элемента 3 и неподвижной части 4 первой пластины 2 параллельно плоскости первой пластины 2 и перпендикулярно направлению длины чувствительного элемента 3.
Чувствительный элемент 3 образован в первой пластине 2 путем анизотропного травления кремния до образования промежутков 11', 11'' между чувствительным элементом 3 и первой пластиной 2.
Неподвижные электроды 6 и 8 дифференциального емкостного преобразователя выполнены аналогично. Так неподвижный электрод 8 на третьей пластине 7 выполнен путем напыления электропроводного материала, например меди, на поверхность третьей пластины 7, имеет прямоугольную форму и размеры L ≥ l и B ≥ b (фиг. 3).
Компенсационный акселерометр (фиг. 4) содержит двухфазный генератор 12 напряжения переменного тока, источник 13 опорного напряжения постоянного тока, усилитель переменного тока 14, фазовый детектор 15, усилитель постоянного тока 16 с двумя противофазными выходами.
Дифференциальный емкостной преобразователь содержит конденсаторы C1 и C2, образованные электропроводной поверхностью чувствительного элемента 3 и неподвижным электродом 6 на второй пластине 5 и неподвижным электродом 8 на третьей пластине 7. Два выхода двухфазного генератора 12 переменного тока подсоединены через конденсаторы C3 и C4 к дифференциальному емкостному преобразователю.
Электропроводная поверхность чувствительного элемента 3 подключена к источнику 13 опорного напряжения постоянного тока с напряжением и через разделительный конденсатор C5 к входу усилителя переменного тока 14.
К одному из противофазных выходов усилителя постоянного тока 16 посредством резистора R1 подключен неподвижный электрод 6 на второй пластине 5. К другому противофазному выходу усилителя постоянного тока 16 посредством резистора R2 подключен неподвижный электрод 8 на третьей пластине 7.
Компенсационный акселерометр работает следующим образом. При наличии ускорения а по измерительной оси компенсационного акселерометра, перпендикулярной плоскости консоли чувствительного элемента 3, на чувствительный элемент действует инерционный момент Ми:
где b, l, δ - соответственно ширина, длина и толщина чувствительного элемента 3;
ρ - плотность кремния - материала чувствительного элемента 3.
Под действием момента Ми чувствительный элемент 3 деформируется относительно оси изгиба О-О. При этом изменяются емкости конденсаторов C1 и C2 дифференциального емкостного преобразователя и с подвижного электрода, образованного электропроводной поверхностью чувствительного элемента 3, на вход усилителя переменного тока 14 поступит сигнал рассогласования следящей системы компенсационного акселерометра.
После усиления переменного сигнала рассогласования по току и амплитуде в усилителе переменного тока 14, преобразования его в сигнал постоянного тока в фазовом детекторе 15 и усиления по амплитуде в усилителе постоянного тока 16 на каждом его противофазном выходе появляется выходное напряжение U, которое подается на неподвижные электроды 6 и 8. При взаимодействии электростатических сил, вызванных напряжением U0U, на чувствительный элемент 3 воздействует компенсационный момент Мк:
где ε - относительная диэлектрическая проницаемость среды между подвижным и неподвижным электродами дифференциального емкостного преобразователя;
εo - абсолютная диэлектрическая проницаемость;
d - зазор между каждым из неподвижных электродов 6, 8 и чувствительным элементом 3.
Компенсационный момент Мк уравновешивает инерционный момент Ми, и рассогласование следящей системы устраняется. При этом
Ми = Мк (3)
При подстановке в (3) выражений (1) и (2) получается:
Отсюда
U = Ka, (5)
где K - коэффициент преобразования компенсационного акселерометра.
Таким образом, выходное напряжение усилителя постоянного тока 16 пропорционально измеряемому ускорению.
На верхнем пределе ам измеряемых ускорений
а = ам (7)
При этом
U = Uм, (8)
где Uм - максимальное выходное напряжение усилителя постоянного тока 16.
При подстановке (7), (8) в выражение (4) получается:
Отсюда
где k1 - коэффициент, равный:
Прогиб f свободного конца консоли чувствительного элемента 3
где g - распределенная нагрузка консоли;
E - модуль упругости первого рода.
В поле ускорения свободного падения распределенная нагрузка консоли чувствительного элемента 3:
g = bδρg (13)
Для обеспечения высокого порога чувствительного компенсационного акселерометра нужно по крайней мере, чтобы прогиб чувствительного элемента составлял:
f = d (14)
При подстановке в (12) выражений (13), (14) получается:
Отсюда длина консоли чувствительного элемента 3 должна быть не менее величины
где K2 коэффициент, равный:
Для кремниевого чувствительного элемента E = 2 • 1011 H/м2.
Тогда K2 = 48,78 м1/4.
Выражениями (10), (16) устанавливается диапазон измеряемых ускорений посредством компенсационного акселерометра от нижнего предела до верхнего.
Так как весь чувствительный элемент 3 компенсационного акселерометра находится в поле действия электростатических сил, то следящей системой акселерометра парируются любые деформации чувствительного элемента, вызванные ускорениями по трем взаимно перпендикулярным осям.
Источники информации
1. Авторское свидетельство СССР N 1620944, кл. G 01 P 15/08 "Электростатический акселерометр", 1991 г.
2. Патент RU N 2137141 C1, кл. G 01 P 15/13, "Компенсационный акселерометр", 10.09.99.
название | год | авторы | номер документа |
---|---|---|---|
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 2000 |
|
RU2184380C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КВАРЦЕВОГО МАЯТНИКОВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА КОМПЕНСАЦИОННОГО АКСЕЛЕРОМЕТРА | 2002 |
|
RU2219554C2 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 2001 |
|
RU2186401C1 |
СПОСОБ СТАБИЛИЗАЦИИ МАСШТАБНОГО КОЭФФИЦИЕНТА ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА | 1999 |
|
RU2160885C1 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 1998 |
|
RU2149412C1 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 1998 |
|
RU2137141C1 |
СПОСОБ ОБРАБОТКИ ИНФОРМАЦИИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА | 1999 |
|
RU2160886C1 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 1998 |
|
RU2149411C1 |
ГИРОАЗИМУТГОРИЗОНТКОМПАС | 2001 |
|
RU2202769C2 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 2003 |
|
RU2246735C1 |
Изобретение относится к области измерительной техники, а именно к компенсационным преобразователям линейного ускорения с электростатическим обратным преобразователем. Техническим результатом изобретения является повышение устойчивости компенсационного акселерометра к воздействию ускорений, направление которых не совпадает с направлением измеряемого ускорения, а также повышение диапазона измеряемых ускорений. Акселерометр содержит первую пластину из монокристаллического материала, в которой образованы подвижный элемент, неподвижный элемент, вторую и третью пластины, дифференциальный емкостный преобразователь, двухфазный генератор напряжения переменного тока, источник опорного напряжения постоянного тока, усилитель с двумя противофазными выходами. Подвижный элемент выполнен единым элементом консольной конструкции с одинаковой толщиной по всей длине и ширине консоли, каждый из неподвижных электродов дифференциального емкостного преобразователя выполнен с расположением по длине консоли от границы между подвижным и неподвижным элементами до конца консоли. 2 з.п. ф-лы, 4 ил.
где К1 - коэффициент,
ε - относительная диэлектрическая проницаемость среды между чувствительны элементом и неподвижными электродами на второй и третьей пластинах;
Uo - напряжение источника опорного напряжения;
Uм - максимальное выходное напряжение с каждого выхода усилителя постоянного тока;
d - зазор между каждым неподвижным электродом дифференциального емкостного преобразователя и чувствительным элементом;
δ - толщина чувствительного элемента,
где εo - абсолютная диэлектрическая проницаемость;
ρ - плотность материала чувствительного элемента,
длина l консоли чувствительного элемента выполнена не менее величины, определяемой в соответствии с соотношением
где K2 - коэффициент,
где Е - модуль упругости первого рода материала чувствительного элемента;
g - ускорение свободного падения.
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 1998 |
|
RU2137141C1 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 1998 |
|
RU2140652C1 |
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР | 1994 |
|
RU2126161C1 |
Автоматический огнетушитель | 0 |
|
SU92A1 |
Даты
2001-09-20—Публикация
2000-02-15—Подача