СПОСОБ ФОРМИРОВАНИЯ КОСТНОЙ ТКАНИ НА ОСНОВЕ ФОСФАТА КАЛЬЦИЯ (ГИДРОКСОАПАТИТА) Российский патент 2001 года по МПК A61L27/00 

Описание патента на изобретение RU2174848C1

Изобретение относится к медицине, а именно к созданию твердых тканей на основе фосфата кальция (гидроксоапатита) и коллагена, которые могут быть использованы как при лечении, так и при протезировании участков, пораженных дистрофией, при дефектах костной ткани врожденных и приобретенных заболеваниях.

Известен способ формирования костной ткани, когда пересадочный материал приготавливают путем перемешивания деминерализованных и стерилизованных костных частиц с костным морфогенетичсским белком. Таким образом получают коллагеновую губчатую смесь, которую имплантируют в область пораженного участка кости. Однако полученный в этом случае материал не имеет достаточной степени структурной интегрированности компонентов, он также является низкотехнологичным. [Патент США N 4394370].

За прототип выбран способ формирования костной ткани, разработанный авторами, в соответствии с которым в коллагеновый матрикс, помещенный в жидкую среду между разноименными электродами, вводятся ионы кальция (Ca2+) с одной стороны, а с другой стороны ионы фосфата (PO43-) и гидроксида (OH-). В результате электрофореза ионы принимают направленное движение, приводящее к реакции:
5Ca2+ + 3PO43- + OH- = Ca5(OH)(PO4)3 (гидроксоапатит).

Полученное вещество (гидроксоапатит) потом осаждается на коллагеновой основе. [Патент РФ N 2053733].

К недостаткам прототипа следует отнести то, что при пропускании электрического тока одновременно происходит электролиз раствора соли кальция, в результате которого образуется кислота, что связано с появлением в растворе ионов водорода (+H+). Это приводит к изменению pH (со стороны ионов кальция до pH = 1,5 - 2,0 и со стороны фосфат-ионов до pH = 5,5 - 6,0). Вместе с ионами кальция (Ca2+) ионы водорода (H+) диффундируют в коллаген и частично растворяют образующийся гидроксоапатит. Происходит реакция, обратная образованию соли:
Ca5(OH)(PO4)3 + H+ = 5Ca2+ + 3PO43- + H2O
Поэтому равномерного образования солевого компонента во всем объеме имплантата не происходит, несмотря на высокую степень структурной интегрированности компонентов в отдельных местах коллагена во всем объеме она не достигается. Кроме того, образуются побочные продукты, снижающие биологическую эффективность получаемого материала.

Технический результат заявленного решения заключается в стабилизации pH на границе коллаген - рабочий раствор: в растворе с ионом кальция до pH = 11, в растворе с фосфат-ионом до pH = 10,5 - 11. Это обеспечивает максимальное приближениие свойств полученного материала к свойствам нативной кости за счет нейтрализации образующихся при электролизе ионов водорода (H+), что способствует равномерному распределению солевого компонента во всем объеме коллагена, т.к. исключается частичное растворение соли в отдельных его участках.

Это достигается тем, что в раствор соли кальция вводится гидроксид кальция (Ca(OH)2) в избытке относительно основного компонента при постоянном перемешивании.

Предложенный способ заключается в следующем. Коллагеновый матрикс помещают в жидкую среду между разноименными электродами. Электроды с одной стороны омываются раствором, содержащим ионы кальция (Ca2+), а с другой стороны - раствором, содержащим ионы фосфата (PO43-) и гидроксида (OH-). При этом происходит реакция:
5Ca2+ + 3PO43- + OH- = Ca5(OH)(PO4)3
Образующийся гидроксоапатит осаждается на коллагеновой основе. Для нейтрализации ионов водорода (H+), которые также образуются в результате электролиза в раствор соли кальция, вводят гидроксид кальция (Ca(OH)2) в избытке относительно основного компонента при постоянном перемешивании.

Происходит реакция нейтрализации ионов водорода, что предотвращает растворение гидроксоапатита в некоторых участках коллагена:
Ca(OH)2 + H+ = Ca2+ + 2H2O
Другим преимуществом технического решения является постоянное пополнение запасов ионов кальция (Ca2+), что положительно влияет на образование солевого компонента в объеме коллагена.

Полученный материал высушивают, стерилизуют гамма-излучением и подготавливают к имплантации.

Пример. Для получения коллагенового матрикса производят деминерализацию кости, далее осаждают коллаген из раствора. Коллагеновый матрикс может быть взят в готовом виде, приготовленный по любой другой технологии. Перед употреблением коллагеновый матрикс гидратируют дистиллированной водой в соотношении по массе 1:20 (вода:коллаген).

Гидратированный образец помещают в жидкую среду между разноименными полюсами источника постоянного тока. Один электрод погружают в раствор, содержащий соль кальция (CaCl2), а другой - в раствор, содержащий ионы фосфата (PO43-) и гидроксида (OH-) (раствор (NH4)3PO4). Кроме того, в раствор соли кальция добавляют избыток (по массе относительно соли кальция) гидроксида кальция (Ca(OH)2) при постоянном перемешивании раствора.

Затем в течение 4 - 10 часов через растворы пропускают электрический ток начальной плотностью 50 мА/см2. Масса исходного образца 0,4 - 0,6 граммов.

Под действием электрического тока происходят реакции:
1) 5Ca2+ + 3PO43- + OH- = Ca5(OH)(PO4)3
на катоде (в растворе соли CaCl2) происходит разрядка иона хлора с последующим растворением, что приводит к образованию HCl и накоплению ионов водорода (H+). Их нейтрализация обеспечивается Ca(OH)2 по реакции:
2) Ca(OH)2 + H+ = Ca2+ + 2H2O.

В качестве нейтрализующего вещества можно использовать карбонат кальция (CaCO3).

Гидроксоапатит Ca5(OH)(PO4)3, образующийся под воздействием электрофореза, осаждается на коллагене. Процентное содержание солевого компонента в материале зависит от времени и плотности тока. В таблице раскрыта эта зависимость. Полученный материал (коллаген-апатитовый композит или имплантат) был исследован путем заполнения костных полостей. Композит обеспечивает хорошую степень регенерации костной ткани в дефектном участке.

Он не токсичен, не иммуногенен. Имеет высокую степень биосовместимости (без образования антител или отторжения). Равномерность распределения солевого компонента в коллагеновой матрице показана компьютерно-томографически, а также электронографически.

Положительный эффект предложенного технического решения состоит в получении материала с высокой степенью структурной интегрированности во всем объеме, что обеспечивает высокую скорость регенераторного процесса.

Похожие патенты RU2174848C1

название год авторы номер документа
МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ ДЕФЕКТОВ КОСТНОЙ ТКАНИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2004
  • Литвинов Сергей Дмитриевич
RU2274461C2
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ ВОСПОЛНЕНИЯ ДЕФЕКТОВ БИОЛОГИЧЕСКИХ ТКАНЕЙ 2024
  • Литвинов Сергей Дмитриевич
RU2824625C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КОСТНОГО БИОКОМПОЗИТА 2012
  • Горшенёв Владимир Николаевич
  • Телешев Андрей Терентьевич
  • Ершов Юрий Алексеевич
  • Казиев Гарри Захарович
  • Колесов Владимир Владимирович
  • Склянчук Евгений Дмитриевич
RU2482880C1
СРЕДСТВО ДЛЯ ПЛОМБИРОВАНИЯ КОРНЕВЫХ КАНАЛОВ ЗУБА 1999
  • Чигарина С.Е.
  • Богатов А.И.
  • Литвинов С.Д.
  • Буланов С.И.
  • Чигарин В.Н.
RU2155023C1
СПОСОБ МОДЕЛИРОВАНИЯ КОСТНОЙ КРИСТАЛЛИЗАЦИИ ПРИ КОКСАРТРОЗЕ IN VITRO 2012
  • Голованова Ольга Александровна
  • Лемешева Светлана Александровна
  • Измайлов Ринат Рашидович
RU2496150C1
Энтеросорбент на основе кремнийзамещенного биогенного гидроксиапатита кальция 2023
  • Глухова Иулиания Вячеславовна
  • Глухова Анна Вячеславовна
  • Злобина Ольга Вячеславовна
  • Ларионов Сергей Васильевич
  • Коротова Дарья Михайловна
  • Глухов Вячеслав Георгиевич
  • Пичхидзе Сергей Яковлевич
RU2811486C1
СПОСОБ ЛЕЧЕНИЯ КИСТ МОЛОЧНЫХ ЗУБОВ 2001
  • Рахимов Р.И.
  • Литвинов С.Д.
  • Щербаха В.И.
  • Артемьев Ю.К.
RU2204337C2
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИЛАПАТИТА КАЛЬЦИЯ 1992
  • Арсеньев П.А.
  • Евдокимов А.А.
  • Смирнов С.А.
  • Цеханович В.М.
RU2014846C1
Способ получения наноразмерного гидроксиапатита 2020
  • Трубицын Михаил Александрович
  • Хоанг Вьет Хунг
  • Фурда Любовь Владимировна
RU2736048C1
КОЛЛАГЕНОВЫЙ МАТРИКС ИЛИ ГРАНУЛИРОВАННАЯ СМЕСЬ КОСТНОЗАМЕЩАЮЩЕГО МАТЕРИАЛА 2020
  • Цильман Клаудио
  • Буфлер Михаэль
RU2822395C2

Иллюстрации к изобретению RU 2 174 848 C1

Реферат патента 2001 года СПОСОБ ФОРМИРОВАНИЯ КОСТНОЙ ТКАНИ НА ОСНОВЕ ФОСФАТА КАЛЬЦИЯ (ГИДРОКСОАПАТИТА)

Изобретение относится к медицине, а именно к технологии создания твердых тканей на основе фосфата кальция (гидроксоапатита) и коллагена. Сущность изобретения состоит в том, что коллагеновый матрикс помещают в жидкий раствор, содержащий ионы кальция, фосфата и гидроксида, а процесс осаждения гидроксоапатита на коллагене производят под действием электрофореза. Для предотвращения закисления раствора, содержащего ионы кальция, в него добавляется гидроксид или карбонат кальция, что исключает растворение основного продукта (гидроксоапатита). Технический результат: стабилизация рН на границе коллаген - рабочий раствор, что способствует равномерному распределению солевого компонента во всем объеме коллагена и обеспечивает максимальное приближение свойств полученного материала к свойствам нативной кости. 3 ил., 1 табл.

Формула изобретения RU 2 174 848 C1

Способ формирования костной ткани путем помещения коллагенового матрикса в солевой раствор, содержащий препараты кальция, фосфата и гидроксида с последующим проведением электрофореза, отличающийся тем, что в раствор соли кальция добавляют гидроксид кальция или карбонат кальция.

Документы, цитированные в отчете о поиске Патент 2001 года RU2174848C1

RU 2053733 С1, 10.02.1996
СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА ДЛЯ АКТИВИЗАЦИИ РЕПАРАТИВНОГО ОСТЕОГЕНЕЗА 1993
  • Соловьев М.М.
  • Владимирова Л.Г.
  • Чечеткина Е.В.
RU2088240C1
ГЕМОСТАТИЧЕСКОЕ, РАНОЗАЖИВЛЯЮЩЕЕ И ОСТЕОПЛАСТИЧЕСКОЕ СРЕДСТВО 1995
  • Истранов Л.П.
  • Истранова Е.В.
  • Курдюмов С.Г.
  • Воложин А.И.
  • Абоянц Р.К.
  • Орловский В.П.
RU2091083C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНОЙ ТКАНИ 1996
  • Балин Виктор Николаевич
  • Иорданишвили Анрей Константинович
  • Ковалевский Александр Мечиславович
  • Арсеньев Павел Александрович
  • Саратовская Наталья Владимировна
  • Старков Алексей Михайлович
RU2122437C1
РАНОЗАЖИВЛЯЮЩЕЕ И ОСТЕОПЛАСТИЧЕСКОЕ СРЕДСТВО (ВАРИАНТЫ) 1997
  • Воложин А.И.
  • Истранов Л.П.
  • Курдюмов С.Г.
  • Никитин А.А.
  • Мустафаев М.Ш.
RU2117492C1
Способ получения искусственных костных трансплантатов 1983
  • Поляков Валентин Александрович
  • Чемянов Григорий Георгиевич
SU1331501A1
US 4485097 А, 27.11.1984
СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМОГО ПОЛИМЕРНОГО ПОКРЫТИЯ С КОНТРОЛИРУЕМЫМ ВЫХОДОМ ЛЕКАРСТВЕННОГО СРЕДСТВА ДЛЯ МАЛОИНВАЗИВНОЙ ХИРУРГИИ 2015
  • Севостьянов Михаил Анатольевич
  • Баикин Александр Сергеевич
  • Федотов Александр Юрьевич
  • Насакина Елена Олеговна
  • Тетерина Анастасия Юрьевна
  • Сергиенко Константин Владимирович
  • Колмаков Алексей Георгиевич
  • Комлев Владимир Сергеевич
  • Баринов Сергей Миронович
RU2585576C1
Коммутатор 1979
  • Авдеев Вадим Александрович
SU851772A1
Пневматический источник сейсмическихСигНАлОВ для АКВАТОРий 1979
  • Ежов Владмир Александрович
  • Тюхалов Валерий Иванович
  • Гуленко Владимир Иванович
  • Федорчуков Николай Иванович
SU842670A1
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания 1917
  • Латышев И.И.
SU96A1

RU 2 174 848 C1

Авторы

Литвинов С.Д.

Артемьев Ю.К.

Даты

2001-10-20Публикация

2000-08-17Подача