Изобретение относится к области прогнозирования природных катаклизмов и более точно касается способа прогнозирования извержений вулканов.
Ежегодно на земном шаре происходит 20-30 вулканических извержений (в отдельные годы это количество увеличивается до 40-45).
Бедствия от деятельности вулканов связаны с потоками расплавленной лавы, температура которой достигает 1000-1100oC, палящими тучами, пепловыми и грязевыми потоками, выбросами пирокластических материалов. Кроме того, с извержениями часто связаны землетрясения, оползни, цунами.
Поэтому проблема обеспечения своевременного и достоверного предсказания извержений вулканов весьма актуальна.
Современные способы прогнозирования извержений вулканов (геологические, геодезические, геофизические, геохимические и т. д.) ориентированы главным образом на определение конкретных признаков и предвестников извержений, характерных для отдельных действующих вулканов, типов и групп вулканов, и состоят в том, что осуществляют контроль по меньшей мере одного физического параметра, связанного с вулканической деятельностью, в окрестностях возможного извержения вулкана, сравнивают текущее значение параметра с его критическим значением, после которого извержение вулкана наиболее вероятно, и по величине отклонения текущего значения от критического судят о степени вероятности извержения вулкана (Раст Х. Вулканы и вулканизм. М.:Мир, 1982).
По существу все известные в настоящее время способы прогнозирования извержений построены на основе достаточно ограниченного регионального мониторинга, который проводится в активном режиме практически постоянно. Эти способы позволяют получить конкретный результат в отношении места извержения, однако, достаточной определенности относительно предсказания времени извержения известными способами получить, как правило, не удается. Кроме того, необходимость постоянного проведения мониторинга приводит к значительным материальным затратам.
В основу изобретения поставлена задача создать способ прогнозирования извержений вулканов, который позволял бы предсказывать заблаговременно и с достаточной точностью время извержения и при этом не требовал беспрерывно осуществлять мониторинг в течение всего периода наблюдения.
Поставленная задача решается тем, что в способе прогнозирования извержений вулканов, состоящем в том, что осуществляют контроль по меньшей мере одного физического параметра, связанного с вулканической деятельностью в окрестностях возможного извержения вулкана, сравнивают текущее значение параметра с его критическим значением, после которого извержение вулкана наиболее вероятно и по величине отклонения текущего значения от критического судят о степени вероятности извержения вулкана, согласно изобретению контроль параметров осуществляют на протяжении промежутков времени, календарный срок и длительность которых определяют по астрономическим показателям, отражающим величину гравитационной составляющей вулканической деятельности.
Целесообразно контроль параметров осуществлять в промежутки времени вблизи моментов прохождения Землей афелия и перигелия своей орбиты.
При этом желательно, чтобы длительность этих промежутков времени составляла две недели до и две недели после прохождения Землей афелия и перигелия.
Повышения точности прогноза можно достигнуть, если в указанные промежутки времени дополнительно осуществлять контроль широты Луны и в моменты максимальных значений широты прогнозировать максимальную вероятность извержения вулкана.
В этом случае возможно длительность промежутков времени наиболее активного контроля параметров сократить до трех дней до и трех дней после момента прохождения Луной точки максимального отклонения от плоскости Эклиптики.
Можно в качестве контролируемых параметров выбрать по меньшей мере один из группы, включающей угол наклона поверхности Земли, температуру грунта, температуру воды, состав магмы, колебания земной коры, показатель поля земного тяготения.
Способ, выполненный в соответствии с настоящим изобретением, позволяет составить прогноз возможных извержений вулканов на год и более вперед с высокой степенью достоверности, при этом проводить непрерывный активный мониторинг необходимо лишь по существу в течение двух месяцев в году - месяц вблизи времени прохождения Землей перигелия своей орбиты и месяц вблизи прохождения афелия.
Изобретение поясняется описанием конкретных вариантов его осуществления и чертежами, на которых:
фиг. 1 изображает диаграмму распределения вулканических извержений в поле расстояний между Солнцем и Землей, где по оси ординат отложено количество извержений в отклонениях от среднего их числа (в %), а по оси абсцисс отложено расстояние от Земли до Солнца в астрономических единицах (а.е.) с шагом 0,001 а.е.;
фиг. 2 - диаграмму распределения вулканических извержений в поле широт Луны, где по оси ординат отложено количество извержений в отклонениях от среднего их числа (в %), а по оси абсцисс отложено значение эклиптической широты Луны в градусах с шагом 0,5 град.;
Способ прогнозирования, согласно изобретению, основан на четко выраженной периодичности характера распределения вулканических извержений в полях астрономических показателей, отражающих величину гравитационной составляющей вулканической деятельности. Под этими астрономическими показателями в контексте данной заявки имеются в виду - геоцентрическая долгота Солнца и эклиптическая широта Луны.
Литосфера Земли, в которой происходит развитие вулканических процессов, локализована в гравитационном поле Земли, тесно связанном с гравитационными полями Солнца и Луны. При этом гравитационное взаимодействие Земли с другими небесными телами проявляется в виде возмущающих и приливных сил, имеющих периодический характер, связанный с изменением расстояния от Солнца до Земли. Эти силы выполняют роль триггерных механизмов периодического действия. Вулканические процессы находятся в прямой зависимости от внутренней тектонической деятельности Земли, а также от внешнего гравитационного воздействия. Образование трещин в земной коре, приводящее к снижению нагрузки и началу процесса извержения, связано с периодическими деформациями земного эллипсоида, происходящими под действием приливных и/или возмущающих сил ближайших к Земле небесных тел, в первую очередь, Солнца и Луны.
Именно с действием приливных сил Луны и Солнца связаны упомянутые выше астрономические показатели:
1. АР-Земли - фактор, определяющий высокую вероятность извержений в то время, когда Земля находится вблизи афелия (A) или перигелия (P) своей орбиты. Это возможно связано с изменением склонения Солнца относительно плоскости земного экватора и изменением в соотношениях горизонтальной и вертикальной составляющих приливной силы (период АР-Земля фактора - 1/2 года или 182,7 суток - период тропического неравенства солнечного прилива или 1/2 периода параллактического неравенства).
2. β- фактор определяет высокую вероятность извержений при положении Луны в области высоких эклиптических геоцентрических широт, т.е. при максимальном ее отклонении от плоскости эклиптики, что также может определяться изменением соотношений горизонтальной и вертикальной составляющих в приливной силе Луны (период фактора около 1/2 драконического месяца, точнее 13,6 суток - период тропического неравенства лунного прилива).
Для определения календарного срока и длительности периодов наибольшей вероятности извержения вулкана предварительно проводили хронологические исследования вулканических извержений за 80-летний период XX столетия. При этом календарная система отсчета была заменена на геоцентрическую эклиптическую систему. В этой системе определяли распределение отклонений фактического для выбранного интервала значения числа извержений от среднего их числа по формуле:
где Vs - среднее значение числа извержений для интервала при выбранном масштабе;
Vn - фактическое значение числа извержений для того же интервала.
Из анализа диаграммы, представленной на фиг. 1, следует, что наибольшая вероятность извержений (в два и более раз) имеет место в промежутки времени вблизи моментов прохождения Землей афелия и перигелия своей орбиты. Причем длительность этих промежутков времени для АР-Земли фактора ограничивается по существу неделей до и неделей после прохождения Землей афелия и перигелия, а с учетом обеспечения необходимой надежности прогноза - двумя неделями до и двумя неделями после прохождения Землей A и P.
Лунная орбита расположена в плоскости, которая наклонена к плоскости эклиптики на угол 5o09'. Когда Луна пересекает эклиптику (т.е. находится в узлах своей орбиты), эклиптическая широта равна нулю. Один раз в драконический месяц Луна имеет максимальное положительное (+5o09', северная широта) и максимальное отрицательное (-5o09', южная широта) отклонение от плоскости эклиптики. Как следует из диаграммы, представленной на фиг. 2, максимальная положительная величина отклонения числа вулканических извержений от среднего их значения наблюдается в интервалы времени, в которые Луна максимально отклоняется к северу и югу от эклиптики. При широте от 4,9o до 5,0o число извержений практически вдвое, а при шаге в 0,1o - более чем втрое превосходит среднее для интервала значение. Длительность этих интервалов времени составляет при достаточной степени надежности прогноза три дня до и три дня после момента прохождения Луной точки максимального отклонения от плоскости эклиптики.
В случае, когда действие β- фактора приходится на промежуток времени прохождения Землей точек афелия и перигелия своей орбиты, вероятность извержения существенно повышается, поскольку на литосферу оказывают воздействие одновременно два фактора по существу в фазе.
В зависимости от локализации конкретного вулкана - северное или южное полушарие, регион (Япония, Индонезия и т.д.) - максимум отклонения числа извержений от среднего значения может быть смещен относительно точек афелия и перигелия орбиты Земли, однако, в любом случае этот максимум будет находиться в пределах обозначенных промежутков времени активного контроля. Для определения максимума отклонения для данного конкретного вулкана осуществляют коррекцию положения упомянутого максимума в поле астрономических показателей в зависимости от состава магмы этого вулкана, его термических, морфологических характеристик, глубины очага и т.п.
В указанные промежутки времени проводят контроль с использованием известных измерительных средств по меньшей мере одного физического параметра, связанного с вулканической деятельностью, выбранного из группы, включающей угол наклона поверхности Земли, температуру грунта, температуру воды, состав магмы, колебания земной коры, изменение показателя поля земного тяготения и т. п. Например, контролируют изменение наклона поверхности земной коры и изменение температурного режима грунтов и грунтовых вод. Измерения осуществляют в окрестностях возможного извержения вулкана, для которого критическое значение упомянутых контролируемых физических параметров является известной величиной, зафиксированной при предшествующих извержениях. Измеренное текущее значение контролируемого параметра сравнивают с его критическим значением и по величине отклонения судят о степени вероятности извержения вулкана.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОГНОЗИРОВАНИЯ АНОМАЛИЙ ЭКОСФЕРЫ НА ЗЕМЛЕ ИЛИ ЕЕ ЧАСТИ | 2000 |
|
RU2164029C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ОРБИТЫ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ | 2017 |
|
RU2652603C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ОРБИТЫ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ С ИСПОЛЬЗОВАНИЕМ ПРИЕМНЫХ ОПОРНЫХ РЕПЕРНЫХ СТАНЦИЙ | 2018 |
|
RU2702098C1 |
Способ калибровки прецизионных датчиков угловой скорости с учетом годичной угловой орбитальной скорости вращения Земли | 2023 |
|
RU2810893C1 |
ЧАСЫ С АНАЛЕММОЙ И СПОСОБ ОТОБРАЖЕНИЯ АНАЛЕММЫ | 2015 |
|
RU2619096C1 |
УСТРОЙСТВО ДЛЯ ДЕМОНСТРАЦИИ ГЕОЦЕНТРИЧЕСКОГО ПОЛОЖЕНИЯ И ДВИЖЕНИЯ СПУТНИКОВ ЗЕМЛИ | 1991 |
|
RU2024957C1 |
Способ ограничения засорения эксплуатируемых областей околоземного космического пространства | 2017 |
|
RU2665156C1 |
СПОСОБ ПРЕДУПРЕЖДЕНИЯ ИЗВЕРЖЕНИЙ ВУЛКАНОВ | 2001 |
|
RU2231092C2 |
Прибор времени с многофункциональным механизмом индикации циклов противостояния Земли и Марса | 2018 |
|
RU2681297C1 |
Часы с индикатором расстояния от Марса до Солнца | 2020 |
|
RU2735470C1 |
Сущность: осуществляют контроль по меньшей мере одного физического параметра, связанного с вулканической деятельностью, в окрестностях возможного извержения вулкана. Сравнивают текущее значение параметра с его критическим значением, после которого извержение вулкана наиболее вероятно. По величине отклонения текущего значения от критического судят о степени вероятности извержения вулкана. Контроль параметров осуществляют на протяжении промежутков времени, календарный срок и длительность которых определяют по астрономическим показателям, отражающим величину гравитационной составляющей вулканической деятельности. В частности, используют такие показатели, как геоцентрическая долгота Солнца и эклиптическая широта Луны. Технический результат: осуществление с достаточной точностью прогноза времени извержения без проведения непрерывного мониторинга. 5 з.п. ф-лы, 2 ил.
СПОСОБ ОБНАРУЖЕНИЯ ВОЗМОЖНОСТИ НАИБОЛЕЕ ОПАСНЫХ КАТАСТРОФИЧЕСКИХ ЯВЛЕНИЙ | 1997 |
|
RU2124744C1 |
ФОТОЭЛЕКТРИЧЕСКОЕ СЧИТЫВАЮЩЕЕ УСТРОЙСТВО | 1989 |
|
RU2030789C1 |
Способ прогнозирования землетрясений | 1983 |
|
SU1163287A1 |
US 5811974 A, 22.09.1998. |
Авторы
Даты
2001-11-20—Публикация
2000-08-17—Подача