СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ДЕФЕКТОСКОПИИ СТАЛЬНЫХ ТРУБ В СКВАЖИНАХ Российский патент 2001 года по МПК E21B47/00 G01N27/83 

Описание патента на изобретение RU2176317C1

Изобретение относится к геофизическим исследованиям в скважинах и может быть использовано при электромагнитной дефектоскопии стальных труб, расположенных в скважине: бурильных, обсадных и насосно-компрессорных труб.

Известен способ магнитной дефектоскопии металлических труб в скважинах, заключающийся в перемещении локатора, содержащего магнитопровод, внутри исследуемой колонны и измерении изменения магнитного поля, соответствующего дефекту колонны (авт. св. СССР N 1263824, кл. E 21 B 47/00). Способ позволяет выделять муфтовые соединения, трещины, вмятины, однако он дает хорошие результаты только в скважинах с одноколонной конструкцией и не обеспечивает определение толщины колонны.

Известен способ обнаружения нарушений, вызванных механическим напряжением, в обсадных трубах нефтяных скважин (патент США N 3392732), заключающийся в измерении напряженности постоянного магнитного поля, индуцированного полем Земли, путем измерения э.д.с., наводимой изменением этого поля в индукционной катушке во время движения прибора по скважине.

Изобретение основано на открытии, что магнитное поле, соответствующее разрывам в железной обсадной трубе, заметно сильнее, чем то, которое связано с муфтами, переходниками или другими частями НКТ или обсадной трубы. Этот способ позволяет определить только разрывы во внешней (обсадной колонне) и муфты НКТ, но также не обеспечивает определение толщины колонны.

Наиболее близким по технической сущности к заявляемому является способ электромагнитной дефектоскопии металлических труб в скважинах, заключающийся в излучении электромагнитного сигнала с помощью генераторной катушки и приема электромагнитного сигнала, вызванного вихревыми токами, возбуждаемыми в обсадных или насосно-компрессорных трубах, в момент выключения тока в генераторной катушке, по величине которого судят о наличии или отсутствии дефектов. Для избавления от квазипостоянных помех используют генераторные импульсы различной полярности, а полученные разнополярные электромагнитные сигналы вычитают (патент РФ N 2074314, кл. E 21 B 47/00, 47/12).

Однако способ не позволяет определять места разрывов колонны и рассоединения в муфтах обсадной колонны через НКТ.

Предлагаемое изобретение решает задачу получения дополнительной информации о местах разрывов колонны и рассоединения в муфтах обсадной колонны через НКТ посредством измерения естественного постоянного магнитного поля одновременно с измерением процесса спада электромагнитного поля после воздействия зондирующих импульсов переменной полярности, обеспечивающих получение информации о толщине стенки обсадной трубы.

Для решения этой задачи в способе электромагнитной дефектоскопии металлических труб в скважинах, заключающемся в излучении зондирующих двухполярных электромагнитных импульсов с помощью генераторной катушки и измерении э. д. с. , наведенной в приемной катушке процессом спада электромагнитного поля, вызванного зондирующими импульсами, вычитании значений э.д.с., полученной после положительного и отрицательного генераторных импульсов, дополнительно измеряют напряженность естественного магнитного поля вдоль трубы, для чего замеры э.д.с. на приемной катушке в двух полуциклах работы генераторной катушки складывают, при этом сигналы, вызванные импульсами зондирующего тока, имеющие различную полярность, вычитаются и по величине результирующего сигнала, соответствующего величине скорости изменения естественного магнитного поля, судят о наличии или отсутствии разрывов в колонне.

На фиг. 1 показан процесс формирования измеряемого сигнала, на фиг. 2 - результаты скважинных измерений с использованием предлагаемого способа. На фиг. 3 приведены результаты наземного моделирования в случае наличия рассоединения в муфте обсадной трубы, на фиг. 4 - в случае отсутствия рассоединения.

Сущность способа заключается в следующем: возбуждение электромагнитного поля в предлагаемом способе осуществляется путем подачи импульсов тока в генераторную зондирующую катушку. В момент выключения тока в трубе, окружающей катушку, возникают вихревые токи, которые являются причиной возникновения спадающего электромагнитного поля. При этом в принимающей катушке возбуждается э.д.с. Измеряя эту э.д.с. на разных временных задержках относительно момента выключения тока, можно судить о состоянии окружающих катушки металлических труб.

При измерении э.д.с., наведенной процессом спада вихревых токов, возможно присутствие низкочастотных аддитивных помех, вклад которых можно считать постоянным в пределах одного цикла измерения.

Для устранения влияния этих помех могут применяться разнополярные импульсы зондирующего тока (природа помех будет рассмотрена ниже).

Рассмотрим процесс формирования измеряемого сигнала (фиг. 1), где: Jген - разнополярные импульсы тока в зондирующей катушке, ε1 - э.д.с. на зажимах измерительной катушки, обусловленная спадающими вихревыми токами, ε2 - э.д. с. медленно меняющейся аддитивной помехи, ε = ε12 - суммарная э.д.с.

Предположим, что мы измеряем ε1 на задержке Δt относительно момента выключения тока t1 и t2 (в момент t1 + Δt после положительного импульса и в момент t2 + Δt после отрицательного импульса). Мы получаем значения U1 для положительного импульса Jген и U2 для отрицательного импульса. Предположим, что труба, в которой происходит замер, идеально однородна. Тогда, пренебрегая другими возможными источниками помех, мы можем записать:
U1=-U2,
где U1 > 0 - напряжение э.д.с. вихревых токов после положительного импульса генератора тока при задержке от момента выключения тока Δt;
U2 < 0 - то же, что и U1, после отрицательного импульса генератора тока.

В момент измерения напряжения U1 э.д.с. низкочастотной помехи ε2 может принять значение U3, а в момент измерения U2 соответственно U4. Предположим, что помеха ε2 меняется настолько медленно, что
U3 - U4 = δ ≅ 0,
где δ - разность между значениями аддитивной помехи, образовавшаяся за время, прошедшее между положительным и отрицательным замерами ε1.

В итоге в момент t1 + Δt на зажимах катушки будет присутствовать напряжение U1 + U3, а в момент t2 + Δt соответственно U2 + U4.

Применяющийся метод избавления от аддитивной помехи заключается в вычитании значений суммарной э.д.с., полученной после положительного и отрицательного генераторных импульсов:
Uсигн = (U1+U3) - (U2+U4) = U1-U2+U3-U4 = U1 - (-U1) + δ ≅ 2U1.

Получившееся значение полезного сигнала Uсигн приблизительно равно удвоенному значению э.д.с., измеренной после одного импульса тока генератора.

При замерах в стальных трубах основным источником аддитивных помех является постоянное магнитное поле, которое увеличивается на некоторых участках колонн. При движении измерительной катушки в этом магнитном поле возникает помеха типа описанной ε2.

Измерение этого магнитного поля может дать дополнительную информацию о состоянии стальных труб. В частности, аномалии магнитного поля могут возникать при наличии в колонне немагнитного зазора, связанного с рассоединением в муфтах обсадной трубы. Информация о наличии аномалий магнитного поля также важна потому, что в их районе работа дефектоскопа может быть нарушена из-за ограничения сигнала в усилительном тракте.

Предлагаемый способ получения значения величины напряженности естественного магнитного поля, пропорциональной скорости движения скважинного прибора и производной напряженности поля по оси, направленной вдоль движения прибора, состоит в следующем:
находят величину
Uпом = (U1+U3)+(U2+U4) = U1+U2+U3+U4=U1-U1+2U4 + δ ≅ 2U4,
т. е. замеры, полученные после генераторных импульсов разной полярности, суммируют. Получившаяся величина Uпом примерно равна удвоенной величине аддитивной помехи (при условии, что сигналы от вихревых токов положительной и отрицательной полярности равны по модулю).

На фиг. 2 приведены реальные замеры Uсигн и Uпом, полученные в скважине с использованием данных одного зонда. При прохождении двух муфт кривая Uсигн имеет одинаковые аномалии, вызванные увеличением общей эффективной толщины металла, в котором циркулируют вихревые токи. В то же время аномалия Uпом отмечается на одной муфте и почти отсутствует на другой. Причиной появления аномалии является наличие в муфте, напротив которой наблюдается аномалия Uпом, немагнитного зазоpa, что вызывает возрастание магнитного сопротивления и скачок в этом районе напряженности постоянного магнитного поля.

На фиг. 3 показан результат наземного моделирования ситуации, когда прибор проходил мимо рассоединения в муфте. Для имитации индуцированного поля использовался постоянный магнит. В результате были получены кривые, по форме повторяющие те, что получены в скважине при прохождении прибора мимо аномальной муфты. На фиг. 4 показаны замеры в той же модели, но без рассоединения в муфте. Аномалии Uпом нет, как и в подавляющем большинстве случаев при скважинных замерах.

В способе по патенту США N 3392732 подобные аномалии получены с использованием скважинного прибора, состоящего из катушки индуктивности. Замеры производились через НКТ. Наличие рассоединений в муфтах было затем подтверждено прямым визуальным наблюдением с помощью телевизионной системы инспекции скважин после подъема НКТ.

Предлагаемый способ позволяет с помощью электромагнитного дефектоскопа одновременно обнаруживать разрывы и рассоединения, а также муфты обсадной колонны через НКТ, обнаруживать дефекты типа трещин в одноколонной конструкции и раздельно определять толщину стенок в обсадной трубе и НКТ в многоколонной конструкции.

Похожие патенты RU2176317C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ДЕФЕКТОСКОПИИ-ТОЛЩИНОМЕТРИИ МНОГОКОЛОННЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Миллер Андрей Аскольдович
  • Миллер Аскольд Владимирович
  • Степанов Станислав Владимирович
RU2468197C1
ЭЛЕКТРОМАГНИТНЫЙ СКВАЖИННЫЙ ДЕФЕКТОСКОП 2001
  • Теплухин В.К.
  • Миллер А.А.
  • Миллер А.В.
  • Мурзаков Е.М.
  • Степанов С.В.
  • Судничников В.Г.
RU2215143C2
СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ДЕФЕКТОСКОПИИ ОБСАДНЫХ КОЛОНН В СКВАЖИНЕ И ЭЛЕКТРОМАГНИТНЫЙ ДЕФЕКТОСКОП ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Теплухин Владимир Клавдиевич
  • Миллер Андрей Аскольдович
  • Миллер Аскольд Владимирович
  • Мурзаков Евгений Михайлович
  • Степанов Станислав Владимирович
  • Судничников Виталий Григорьевич
  • Судничников Андрей Витальевич
RU2330276C2
СКВАЖИННЫЙ РАСХОДОМЕР 2000
  • Самигуллин Х.К.
  • Утопленников В.К.
  • Антонов К.В.
  • Багаутдинов З.Ш.
RU2188942C2
СВЕРЛО ПЕРФОРАТОРА НЕФТЕГАЗОВЫХ СКВАЖИН 2002
  • Яруллин Р.К.
RU2225939C1
УСТРОЙСТВО НА КАРОТАЖНОМ КАБЕЛЕ ДЛЯ ОТРЕЗАНИЯ ОБСАДНОЙ КОЛОННЫ В СКВАЖИНЕ 2003
  • Яруллин Р.К.
  • Запевин М.И.
RU2243353C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Гуторов Юлий Андреевич
  • Коротченко Александр Григорьевич
  • Гимаев Ирек Ханифович
RU2560997C2
ПРОФИЛЕМЕР-ДЕФЕКТОСКОП ДЛЯ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБСАДНЫХ КОЛОНН И НАСОСНО-КОМПРЕССОРНЫХ ТРУБ НЕФТЕГАЗОВЫХ СКВАЖИН 2010
  • Степанов Станислав Владимирович
  • Судничников Виталий Григорьевич
  • Миллер Аскольд Владимирович
  • Миллер Андрей Аскольдович
  • Судничников Андрей Витальевич
RU2440493C1
СВЕРЛЯЩИЙ ПЕРФОРАТОР И СПОСОБ КОНТРОЛЯ ЕГО РАБОТЫ 2010
  • Яруллин Рашит Калимович
RU2439294C2
СПОСОБ КОНТРОЛЯ УСТАНОВКИ ЭЛЕКТРОУПРАВЛЯЕМОГО ПАКЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Яруллин Рашит Калимович
  • Запевин Михаил Иванович
RU2280148C2

Иллюстрации к изобретению RU 2 176 317 C1

Реферат патента 2001 года СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ДЕФЕКТОСКОПИИ СТАЛЬНЫХ ТРУБ В СКВАЖИНАХ

Изобретение относится к геофизическим исследованиям в скважинах и может быть использовано при электромагнитной дефектоскопии стальных труб, расположенных в скважине: бурильных, обсадных и насосно-компрессорных. Техническим результатом является получение дополнительной информации о местах разрывов колонны и рассоединений в муфтах обсадной колонны через насосно-компрессорные трубы посредством измерения естественного постоянного магнитного поля одновременно с определением толщины стенки обсадной трубы. Для этого производят излучение зондирующих двухполярных электромагнитных импульсов с помощью генераторной катушки и измерение э.д.с., наведенной в приемной катушке процессом спада электромагнитного поля, вызванного зондирующими импульсами. Затем производят вычитание значений э.д.с., полученной после положительного и отрицательного генераторных импульсов. Дополнительно измеряют напряженность естественного магнитного поля вдоль трубы. Для чего складывают замеры э. д. с. на приемной катушке в двух полуциклах работы генераторной катушки. При этом сигналы, вызванные импульсами зондирующего тока, имеющие различную полярность, вычитаются, а сигналы, вызванные естественным магнитным полем, складываются. По величине результирующего сигнала, соответствующего величине скорости изменения естественного магнитного поля, судят о наличии или отсутствии разрывов в колонне. 4 ил.

Формула изобретения RU 2 176 317 C1

Способ электромагнитной дефектоскопии стальных труб в скважинах, заключающийся в излучении зондирующих двухполярных электромагнитных импульсов с помощью генераторной катушки и измерении э.д.с., наведенной в приемной катушке процессом спада электромагнитного поля, вызванного зондирующими импульсами, вычитании значений э.д.с., полученной после положительного и отрицательного генераторных импульсов, отличающийся тем, что дополнительно измеряют напряженность естественного магнитного поля вдоль трубы, для чего складывают замеры э.д.с. на приемной катушке в двух полуциклах работы генераторной катушки, при этом сигналы, вызванные импульсами зондирующего тока, имеющие различную полярность, вычитаются и по величине результирующего сигнала, соответствующего величине скорости изменения естественного магнитного поля, судят о наличии или отсутствии разрывов в колонне.

Документы, цитированные в отчете о поиске Патент 2001 года RU2176317C1

СКВАЖИННЫЙ ЭЛЕКТРОМАГНИТНЫЙ ТОЛЩИНОМЕР-ДЕФЕКТОСКОП 1996
  • Миллер А.В.
  • Теплухин В.К.
  • Миллер А.А.
  • Павлов В.А.
RU2074314C1
Способ электромагнитной дефектоскопии обсадных колонн в скважинах 1984
  • Колесниченко Анатолий Терентьевич
  • Петерсон Александр Яковлевич
SU1208203A1
Скважинный магнитный локатор дефектов труб 1984
  • Леонович Игорь Гаврилович
  • Пятецкий Ефим Менделевич
  • Хренов Александр Игоревич
SU1263824A1
Скважинный магнитный локатор 1985
  • Леонович Игорь Гаврилович
  • Пятецкий Ефим Менделевич
  • Хренов Александр Игоревич
  • Лабутин Владимир Михайлович
SU1305318A1
Устройство для контроля технического состояния труб обсадных колонн 1985
  • Климов В.В.
  • Измайлов Л.Б.
SU1343925A1
Способ определения дефектов в колонне обсадных труб и устройство для его осуществления 1980
  • Стефен Дрю Боннер
SU1376950A3
SU 1769105 А, 15.10.1992
Устройство для определения коррозионных повреждений обсадных колонн 1988
  • Климов Вячеслав Васильевич
  • Беспалов Валерий Владимирович
  • Садыкова Наталья Михайловна
  • Карабут Александр Викторович
  • Титарев Виктор Николаевич
SU1717803A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБСАДНЫХ КОЛОНН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Климов В.В.
  • Басарыгин Ю.М.
  • Будников В.Ф.
  • Черненко А.М.
  • Радыгин А.Г.
  • Браташ И.В.
RU2134779C1
СПОСОБ МАГНИТНОГО КОНТРОЛЯ 1996
  • Шелихов Геннадий Степанович
  • Лозовский Владислав Николаевич
  • Ямпольский Михаил Семенович
  • Розов Валерий Никандрович
RU2118816C1
СПОСОБ СВАРКИ ПЛАВЛЕНИЕМ МЕТАЛЛОВ И СПЛАВОВ, ПРЕТЕРПЕВАЮЩИХ ПОЛИМОРФНОЕ ПРЕВРАЩЕНИЕ 1996
  • Муравьев В.И.
  • Марьин Б.Н.
  • Войтов В.Н.
  • Иванов Ю.Л.
  • Фролов П.В.
  • Богатов Ю.Д.
RU2110379C1
US 3492866 А, 03.02.1970
DE 3321375 А1, 22.12.1983
DE 3424308 А1, 17.01.1985
ГОЛОГРАФИЧЕСКИЙ ИНТЕРФЕРОМЕТР 0
SU266103A1
Автоматический огнетушитель 0
  • Александров И.Я.
SU92A1

RU 2 176 317 C1

Авторы

Миллер А.А.

Даты

2001-11-27Публикация

2000-03-13Подача