СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА Российский патент 2002 года по МПК C06B21/00 C06D5/06 

Описание патента на изобретение RU2179543C2

Изобретение относится к области изготовления заряда ракетного двигателя (РД) из смесевого ракетного твердого топлива (СРТТ), а конкретно к технологии изготовления заряда методом литья под давлением на установке непрерывного действия со шнековой выгрузкой и отверждения его групповым способом под давлением. Способ может быть применен в промышленности для производства твердотопливных двигателей различных классов ракет, пороховых аккумуляторов давления для скважин и других изделий аналогичного назначения.

Развитие ракетной техники выдвигает все более повышенные требования к качеству зарядов СРТТ, к эффективности производства за счет снижения трудозатрат при изготовлении, повышения производительности, и тем самым к способу их изготовления.

Анализом отечественной и зарубежной патентной литературы установлено, что известны способы формования заряда литьем под давлением, предусматривающие нагревание компонентов топливной массы при смешении до температуры выше точки размягчения (патент США 3396215); до температуры 100-125oС (патент США 3408431); способ горячего формования блоков при температуре 85oС и более (патент Франции 2376094, кл С 06 В 21/00); существует способ полимеризации топлива под давлением инертного газа, которое выше атмосферного, но не выше 1/4 рабочего давления заряда при температуре 40-50oС (патент Франции 2116934, кл. С 06 В 21/00).

Известен также способ экструзии для получения смесевого твердого топлива (патент США 4776993 МКИ С 06 G 21/00), который взят авторами в качестве прототипа, предусматривающий дополнительное перемешивание топливной массы в течение 60-120 мин, отверждения до твердости 40-70 единиц по Шору, экструдирование при температуре менее 49oС и окончательное отверждение топливва.

Недостатками указанных способов и прототипа являются:
- относительно высокая температура формования 85oС и более и низкая температура отверждения 40-50oС, что приводит к образованию разрежения в корпусе при отверждении, подсосу воздуха из атмосферы через неплотности пресс-формы и к нарушению качества зарядов по монолитности;
- относительно высокая температура формования 85oС и более не обеспечивает создания необходимого давления топливной массы в корпусе РД в конце формования заряда на установке со шнековой выгрузкой вследствие низкой вязкости топливной массы до 3,0•102 Па•с при таких температурах, что также служит причиной образования дефектов в заряде;
- отсутствие термостатирования в процессе группирования заряда перед отверждением не исключает возможности подсоса воздуха в корпус РД из-за снижения давления в корпусе ниже атмосферного в результате охлаждения топливной массы;
- отсутствие ограничений по времени и температуре термостатирования в процессе группирования зарядов, что может привести к образованию микротрещин в заряде в случае превышения полноты отверждения топлива до постановки на отверждение допустимых пределов.

Техническим результатом предлагаемого изобретения является улучшение качества заряда по монолитности, повышение производительности и безопасности процесса отверждения заряда.

Предлагаемый способ изготовления заряда из СРТТ включает формование заряда методом литья топливной массы под давлением на установке непрерывного действия со шнековой выгрузкой, поддержание температуры топливной массы в шнеке при формовании путем подачи теплоносителя в кожух шнека, группирование зарядов для отверждения и отверждение под давлением.

Технический результат достигается следующим образом.

Формуют заряд в корпус РД при температуре топливной массы на 10-20oС ниже температуры отверждения, отформованный заряд выдерживают при работающем шнеке в течение 120-420 с с одновременным охлаждением топливной массы в шнеке путем подачи теплоносителя в кожух шнека с температурой 5-20oС и производят отсечку топливной массы при давлении в корпусе ракетного двигателя 0,5-2,0 МПа. Затем в процессе группирования заряд термостатируют при температуре теплоносителя на 2-5oС выше температуры формования, причем время термостатирования ограничивают временем достижения полноты отверждения топливной массы до 20% и отверждают заряд при температуре 65-85oC и давлении в корпусе ракетного двигателя 1,5-6,0 МПа.

Взаимосвязь между технологическими параметрами формования и отверждения зарядов определяется эмпирической формулой:
PОТВ= PОТС+ΔT•μ,
где Ротв - давление топливной массы в корпусе РД при отверждении.

Для обеспечения безопасности, качества по монолитности и упрощения конструкции пресс-форм предлагается поддерживать в пределах 1,5-6,0 МПа;
Ротс - давление топливной массы в корпусе РД после формования (отсечки), МПа;
ΔT - разница температур топливной массы в корпусе РД при отверждении и формовании, oС;
μ - коэффициент жесткости корпуса РД определяется гидравлическими испытаниями и колеблется в пределах 0,12-0,3 МПа/oС.

На основании данной зависимости для обеспечения безопасности процесса, исключения образования дефектов в заряде предлагается формование заряда в корпусе РД проводить при температуре топливной массы на 10-20oС ниже температуры отверждения, а отсечку топливной массы производить при давлении в корпусе РД 0,5-2,0 МПа.

Конкретные режима исполнения предлагаемого способа приведены в табл.1.

При формовании зарядов на установке непрерывного действия со шнековой выгрузкой давление отсечки топливной массы в корпусе РД связано с напорностью шнека, которая для выбранной конструкции аппарата зависит от вязкости топливной массы. Изменение напорности шнека от вязкости топливной массы и вязкости топливной массы от температуры приведены соответственно на фиг.1 и 2. Из фиг.1, 2 видно, что чем выше вязкость топливной массы, тем выше напорность шнека, чем ниже температура, тем выше вязкость топливной массы. Следовательно, увеличение вязкости топливной массы и тем самым повышение напорности шнека для заданной рецептуры топлива можно достичь только путем снижения температуры топливной массы.

Для увеличения напорности шнека 1 (см. фиг.3) достаточно охлаждения топливной массы в узком зазоре δ, на поверхности контакта топливной массы втулка 2 - реборда 3 шнека, что достигается путем подачи теплоносителя в кожух 4 шнека с температурой 5-20oС. При этом важно правильно выбрать время выдержки. При длительном охлаждении температура топливной массы понизится не только на поверхности контакта, но и во всем объеме шнека, что приведет к снижению температуры топливной массы в корпусе РД и увеличению продолжительности отверждения заряда. Зависимость давления отсечки (Ротс) от времени выдержки и температуры теплоносителя, подаваемого во втулку шнека, приведена в табл.2.

Из данных табл.2 температура теплоносителя выбрана 5-20oС, время выдержки 120-420 с, которые обеспечивают создание требуемого давления отсечки топливной массы в корпусе РД в пределах 0,5-2,0 МПа. Снижение температуры теплоносителя ниже 5oС потребует дополнительных затрат для обеспечения данной температуры теплоносителя, а повышение температуры теплоносителя выше 20oС удлиняет время выдержки, что является нецелесообразным.

Для исключения образования дефектов в заряде из-за падения давления в корпусе РД до атмосферного, в процессе группирования заряды предлагается термостатировать при температуре теплоносителя на 2-5oС выше температуры формования.

Конкретные примеры исполнения предлагаемых режимов способа приведены в табл. 3. Примеры приведены для корпусов РД с коэффициентом жесткости μ= 0,25-0,3 МПа/oС, давления отсечки топливной массы Ротс=0,5-0,7 МПа и времени группирования 36 ч.

Как видно на данных табл. 3, температура теплоносителя на 2-5oС выше температуры формования заряда, предлагаемой в способе, исключает охлаждение топливной массы в процессе группирования зарядов и падение избыточного давления в корпусе, предотвращает попадание воздуха в корпус РД и образование дефектов в заряде.

Время термостатирования в процессе группирования не должно превышать времени достижения полноты отверждения топлива 20%, или времени потери "живучести" топливной массой. В противном случае происходит образование микротрещин и нарушение целостности заряда при переходе с режима группирования на режим отверждения из-за деформирования подполимеризованной топливной массы в корпусе РД под воздействием прироста температуры и давления.

Опытами, проведенными в НИИПМ г. Перми, показано, что "живучесть" топливной массы определяется временем достижения вязкостью при термостатировании 30 тыс. Па•с, выше которой топливная масса теряет способности к течению без разрыва сплошности. На фиг.4, 5 приведены зависимости вязкости и полноты отверждения топлива от времени термостатирования при разных температурах.

Из графиков следует, что, чем выше температура взаимодействия полимерного связующего с вулканизирующими добавками, тем быстрее растет полнота отверждения и вязкость топливной массы. Время потери "живучести" соответствует полноте отверждения топлива 20%.

Время достижения 20%-ной полноты отверждения топлива при фактической температуре теплоносителя в процессе группирования заряда определяют исходя из кинетики отверждения образца топлива при стандартной температуре, например при 80oС, и коэффициента трансформации (пересчета) времени отверждения с этой температуры на фактическую согласно следующей формуле

где τ - время достижения 20%-ной полноты отверждения состава при фактической температуре, ч;
τ80- время достижения 20%-ной полноты отверждения топлива при температуре 80oС, ч;
χ - коэффициент пересчета времени отверждения с 80oС на требуемую температуру. При температурах 50, 60, 70oC коэффициенты соответственно равны 0,14; 0,3; 0,5.

Например, время достижения 20%-ной полноты отверждения топлива при стандартной температуре 80oС составило 21 ч. Отсюда следует, что время группирования заряда перед отверждением при Т=60oС (χ60=0,3) не должно превышать 70 ч.

После операции группировки заряд отверждают при температуре 65-85oС и давлении в корпусе РД 1,5-6,0 МПа.

Предлагаемый способ изготовления заряда СРТТ проверен с положительными результатами на заводе им. С.М. Кирова, г. Пермь. В результате использования способа достигнуты повышение качества зарядов по монолитности, повышение производительности фазы отверждения, обеспечение безопасности процесса, снижение трудозатрат при изготовлении зарядов.

Похожие патенты RU2179543C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2002
  • Талалаев А.П.
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Салахов Р.Ф.
  • Пименова Л.И.
  • Федченко Н.Н.
  • Винокуров Ю.А.
  • Гринберг С.И.
RU2230722C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Гатауллин И.Г.
  • Салахов Р.Ф.
  • Замахаев Ю.В.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Гринберг С.И.
RU2196760C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СРТТ 2000
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Хренов В.С.
  • Салахов Р.Ф.
  • Федченко Н.Н.
  • Лисовский В.М.
RU2198153C2
СПОСОБ ОПРЕДЕЛЕНИЯ РАВНОВЕСНОЙ ТЕМПЕРАТУРЫ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2002
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Салахов Р.Ф.
  • Энкин Э.А.
  • Федченко Н.Н.
  • Ермолаев С.В.
RU2227131C1
УСТРОЙСТВО ДЛЯ СМЕШЕНИЯ КОМПОНЕНТОВ ВЗРЫВЧАТОГО СОСТАВА 2000
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Гатаулин И.Г.
  • Салахов Р.Ф.
  • Замахаев Ю.В.
  • Санников И.Г.
  • Вронский Н.М.
  • Гринберг С.И.
RU2183603C2
СПОСОБ ПОЛУЧЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2002
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Салахов Р.Ф.
  • Хренов В.С.
  • Федченко Н.Н.
  • Божья-Воля Н.С.
  • Лисовский В.М.
RU2240298C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2002
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Салахов Р.Ф.
  • Пименова Л.И.
  • Кузьмицкий Г.Э.
  • Божья-Воля Н.С.
  • Старкова А.А.
RU2220935C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2003
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Салахов Р.Ф.
  • Пименова Л.И.
  • Кузьмицкий Г.Э.
  • Божья-Воля Н.С.
  • Лисовский В.М.
RU2239621C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2002
  • Куценко Г.В.
  • Салахов Р.Ф.
  • Салахов Р.Ф.
  • Федченко Н.Н.
  • Гринберг С.И.
  • Лисовский В.М.
RU2219150C2
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2009
  • Куценко Геннадий Васильевич
  • Ковтун Виктор Евгеньевич
  • Салахов Рафис Фассахович
  • Замахаев Юрий Васильевич
  • Салахов Радус Фассахович
  • Поваров Сергей Александрович
  • Мельник Геннадий Иванович
  • Шабалин Владимир Михайлович
RU2394011C1

Иллюстрации к изобретению RU 2 179 543 C2

Реферат патента 2002 года СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА

Изобретение относится к изготовлению зарядов ракетного двигателя из смесевого ракетного твердого топлива. Способ изготовления заряда смесевого ракетного твердого топлива включает в себя формование заряда методом литья топливной массы под давлением на установке непрерывного действия со шнековой выгрузкой, поддержание температуры топливной массы в шнеке при формовании путем подачи теплоносителя в кожух шнека, группирование зарядов для отверждения и отверждение под давлением. Формуют заряд в корпус ракетного двигателя при температуре топливной массы на 10-20oС ниже температуры отверждения. Отформованный заряд выдерживают при работающем шнеке в течение 120-420 с с одновременным охлаждением топливной массы в шнеке путем подачи теплоносителя в кожух шнека с температурой 5-20oС и производят отсечку топливной массы при давлении в корпусе ракетного двигателя 0,5-2,0 МПа. В процессе группирования заряд термостатируют при температуре теплоносителя на 2-5oС выше температуры формования. Время термостатирования ограничивают временем достижения полноты отверждения топливной массы до 20% и отверждают заряд при температуре 65-85oС и давлении в корпусе ракетного двигателя 1,5-6,0 МПа. Данное изобретение повышает качество готового изделия по монолитности, обеспечивает безопасность процесса и позволяет снизить трудозатраты при изготовлении зарядов. 5 ил., 3 табл.

Формула изобретения RU 2 179 543 C2

Способ изготовления заряда смесевого ракетного твердого топлива, включающий формование заряда методом литья топливной массы под давлением на установке непрерывного действия со шнековой выгрузкой, поддержание температуры топливной массы в шнеке при формовании путем подачи теплоносителя в кожух шнека, группирование зарядов для отверждения и отверждение под давлением, отличающийся тем, что формуют заряд в корпус ракетного двигателя при температуре топливной массы на 10-20oС ниже температуры отверждения, отформованный заряд выдерживают при работающем шнеке в течение 120-420oС с одновременным охлаждением топливной массы в шнеке путем подачи теплоносителя в кожух шнека с температурой 5-20oС и производят отсечку топливной массы при давлении в корпусе ракетного двигателя 0,5-2,0 МПа, в процессе группирования заряд термостатируют при температуре теплоносителя на 2-5oС выше температуры формования, причем время термостатирования ограничивают временем достижения полноты отверждения топливной массы до 20% и отверждают заряд при температуре 65-85oС и давлении в корпусе ракетного двигателя 1,5-6,0 МПа.

Документы, цитированные в отчете о поиске Патент 2002 года RU2179543C2

US 4776993, 11.10.1988
НЕРВЮРА ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ЕЕ ПЛОСКОЙ РЕБЕРНО-ЯЧЕИСТОЙ СТРУКТУРЫ 1997
  • Васильев В.В.(Ru)
  • Разин А.Ф.(Ru)
  • Бунаков В.А.(Ru)
  • Солдатов С.А.(Ru)
  • Захаревич Л.П.(Ru)
  • Салов В.А.(Ru)
  • Волдман Микаэл
RU2116934C1
US 3562264, 09.02.1971
RU 2053987 C1, 10.02.1996.

RU 2 179 543 C2

Авторы

Куценко Г.В.

Салахов Р.Ф.

Хренов В.С.

Салахов Р.Ф.

Федченко Н.Н.

Божья-Воля Н.С.

Гринберг С.И.

Лисовский В.М.

Даты

2002-02-20Публикация

2000-04-24Подача