СПОСОБ ПЕРЕРАБОТКИ НА ГЛИНОЗЕМ НИЗКОКАЧЕСТВЕННОГО БОКСИТА Российский патент 2002 года по МПК C01F7/06 

Описание патента на изобретение RU2183193C2

Способ относится к цветной металлургии и может быть использован при переработке низкокачественного боксита на глинозем по последовательной схеме Байер-спекание.

Известен способ переработки боксита по последовательной схеме Байер-спекание (см. книгу А.И. Лайнер и др. "Производство глинозема", М., Металлургия, 1978 г. , с. 268-273), включающий размол боксита, выщелачивание его, разбавление вареной пульпы, ее сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора, обескремнивание последнего, совместную декомпозицию алюминатных растворов ветвей Байера и спекания.

К недостаткам указанного способа следует отнести: наличие специального отдельного передела обескремнивания алюминатного раствора ветви спекания, балластный поток в виде серого шлама ветви спекания, потери щелочи (Na2O) при длительной промывке спекового шлама после выщелачивания в ветви спекания.

Наиболее близким из известных способов, принятым за прототип, является способ переработки на глинозем низкокачественного боксита по последовательной схеме Байер - спекание (см. патент РФ 2113406, кл. С 01 F 7/06, опубл. 1998 г.). Способ включает размол боксита на оборотном растворе, выщелачивание его, разбавление вареной пульпы неосветленным алюминатным раствором после выщелачивания спека с содержанием твердого не более 13 г/л, затем совместное обескремнивание ветвей Байера и спекания с добавкой неосветленного алюминатного раствора спекательной ветви, сгущение и промывку красного шлама, фильтрацию его, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора и спекового шлама, классификацию твердого в полученном алюминатном растворе путем сгущения его на мутный слив либо циклонированием.

В упомянутом способе сокращен передел обескремнивания алюминатного раствора ветви спекания, но использование в ветви Байера неосветленного и необескремненного алюминатного раствора после выщелачивания спека с содержанием твердого до 13 г/л обуславливает наличие в красном шламе двухкальциевого силиката, что создает балластный поток на сгущении и промывке в ветви Байера и в ветви спекания. Присутствие двухкальциевого силиката в шламе сгущения и в системе промывки ветви Байера способствует возрастанию вторичных потерь глинозема и щелочи за счет его разложения. Кроме того, не обладая сорбционными свойствами, двухкальциевый силикат не обеспечивает дополнительной очистки раствора от примесей кремния и железа.

Длительная же промывка части серого шлама сверх 13 г/л, содержащего, в основном, мелкую фракцию - 0,06 мм (50-90%) и щелочь концентрацией 95-100 г/л (без фильтрации), в системе репульпаторов и сгустителей ухудшает условия осаждения шлама, что способствует дополнительным потерям щелочи в ветви спекания.

Задача заявляемого изобретения состоит в уменьшении балластных потоков в технологической схеме Байер-спекания и сокращении потерь щелочи в процессе.

Техническим результатом является снижение расхода кальцинированной соды, сокращение аппаратурного оформления ветви спекания, снижение примесей железа и кремния в продукционном гидроксиде алюминия.

Для этого в способе переработки на глинозем низкокачественного боксита, включающем размол боксита на оборотном растворе, выщелачивание его, разбавление вареной пульпы, обескремнивание совместно с алюминатным раствором спекательной ветви, сгущение и промывку красного шлама, фильтрацию его, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора и спекового шлама, сгущение алюминатного раствора после выщелачивания спека, фильтруют серый шлам, полученный после сгущения упомянутого раствора. Кек после фильтрации подвергают кратковременной промывке в течение 0.5-1.0 ч и выводят его из процесса. Осветленную часть алюминатного раствора после сгущения обрабатывают известняковой мукой или мраморной пылью до получения кремневого модуля не ниже 180 единиц и подают ее на совместное выщелачивание с раствором ветви Байера. Причем фильтрат обрабатывают совместно с осветленной частью упомянутого алюминатного раствора спекания.

Сущность изобретения иллюстрируется выполненными на основе экспериментальных данных графиками, где отражены: на фиг.1 - зависимость показателей Ж:Т от содержания фракции -0,06 мм серого шлама; на фиг.2 - зависимость снижения потерь щелочи от показателя Ж:Т в сером шламе.

Предлагаемый способ (основной вариант) осуществляют следующим образом. Боксит вместе с оборотным раствором размалывают в мельницах, пульпу выщелачивают в мешалках при атмосферном давлении (или в автоклавах под давлением). Сюда же на выщелачивание подают осветленную часть алюминатного раствора ветви спекания с фильтратом после фильтрации серого шлама, предварительно обработанную известняковой мукой. Пульпу после выщелачивания разбавляют первой промводой от промывки красного шлама и обескремнивают в течение 2-3 ч при 105oС. Обескремненную пульпу сгущают в сгустителях. Слив сгустителей подвергают контрольной фильтрации и далее направляют на декомпозицию. Полученный после декомпозиции гидроксид алюминия промывают и направляют на кальцинацию. Маточный раствор упаривают с выделением в твердую фазу оборотной соды. Оборотный раствор после отделения оборотной соды подают на размол боксита. Красный шлам после сгущения промывают в системе промывателей, фильтруют и направляют на приготовление шихты для печей спекания. Фильтрат возвращают в систему промывки.

В красный шлам дозируют известняк, размолотый в пульпе красного шлама, оборотную соду и кальцинированную соду. Шихту спекают во вращающихся печах. Полученный спек охлаждают, дробят, выщелачивают промводой от промывки спекового шлама в трубчатых выщелачивателях. Слив трубчатого выщелачивателя (алюминатный раствор спекания) с содержанием твердого 15-40 г/л подщелачивают маточным раствором и направляют на сгущение до получения осветленного алюминатного раствора (слива). Сгущенный шлам (серый шлам), содержащий фракцию -0,06 мм 50-90%, подвергают фильтрации, затем кек фильтра репульпируют водой для промывки спекового шлама и кратковременно (не более одного часа) промывают отдельно от последнего в аппарате колонного типа во взвешенном слое с импульсной разгрузкой. Отмытый серый шлам, имеющий низкий показатель Ж: Т (см. график, фиг.1, кривая "а") выводят из процесса. Слив упомянутого аппарата подают в систему промывки спекового шлама. Фильтрат после фильтрации серого шлама объединяют с осветленной частью (чистым сливом) раствора после сгустителя, смешивают с известняковой мукой и выдерживают в течение 3-6 ч при 95-105oС до получения кремневого модуля μsi=180-200 единиц. Полученную пульпу подают на совместное выщелачивание с раствором ветви Байера. Спековый шлам после трубчатого выщелачивателя (содержащий 30-70% фракции +5 мм) направляют на довыщелачивание в стержневую мельницу, и далее - на промывку в систему гидроциклонов и сгустителей с репульпаторами. Крупную фракцию промывают в репульпаторах, мелкую - в сгустителях. Промытый шлам направляют на шламовое поле.

Таким образом, вывод серого шлама из процесса посредством фильтрации и кратковременной промывки обеспечивает сокращение потерь щелочи со шламом за счет снижения отношения жидкого к твердому (Ж:Т) до 1,5-1,7 ед (см. график фиг.1, кривая "а") и концентрации жидкой фазы путем отмывки методом вытеснения. Такой результат не может быть достигнут по способу, прототипу, т.к. вывод части (13 г/л) серого шлама из системы промывки приводит к увеличению, по сравнению с предлагаемым, мелкодисперсной составляющей (-0,06 мм), обеспечивающей повышенное Ж: Т (см. график фиг.1, кривая "б") и наибольшие потери по щелочи (см график фиг.2). Использование предварительно обескремненного известняковой мукой (μsi не ниже 180) спекательного алюминатного раствора при совместном выщелачивании в Байере позволяет снизить балластный поток в виде серого шлама на спекании и повысить кремневый модуль смешанного раствора до 480-500 единиц, что не достигается в прототипе при использовании серого шлама (13 г/л) в качестве затравки для обескремнивания. Известняк (мраморная пыль), обладая сорбционными свойствами, снижает примеси железа в алюминатном растворе и, соответственно, в продукционном гидрате.

Пример 1. Способ осуществляли в соответствии с основным вариантом. Слив трубчатого выщелачивателя спекательной ветви с содержанием твердого 30 г/л с добавлением маточного раствора направили на сгущение до чистого слива. На сгущении использовали флокулянт АЛКЛАР-600 в количестве 50 г/л, получив осветленную часть алюминатного раствора. Сгущенный (серый) шлам с содержанием фракции -0,06 мм 70% подвергли фильтрации на дисковом фильтре, затем кек фильтра репульпировали водой для промывки спекового шлама и подали в аппарат колонного типа на кратковременную промывку во взвешенном слое с импульсной разгрузкой. Промывку вели в течение 30 мин. Промытый серый шлам удалили из процесса, определив весовым методом показатель Ж:Т, который составил 1.5 (см. график, фиг.1, кривая "а"). Слив упомянутого аппарата направили в систему промывки спекового шлама. Фильтрат после фильтрации серого шлама объединили с осветленной частью алюминатного раствора, смешали с известняковой мукой фракции -0.15 мм 90% и дозировкой 10 г/л и выдержали в течение 4 ч при 102oС, получив кремневый модуль μsi=180 единиц. Затем полученную пульпу направили на совместное выщелачивание в бокситовую пульпу ветви Байера. После совместного выщелачивания и обескремнивания получили кремневый модуль μsi=500 единиц.

Пример 2. Все операции осуществляли в той же последовательности, что и в примере 1, но известняковую муку заменили мраморной пылью фракции -0.15 мм 100% и дозировкой 10 г/л и выдержали в течение 3 ч при 96oС, получив кремневый модуль μsi=200 единиц, далее полученную пульпу также направили на совместное выщелачивание в пульпу ветви Байера. После совместного выщелачивания и обескремнивания получили кремневый модуль μsi=480 единиц.

Похожие патенты RU2183193C2

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ НА ГЛИНОЗЕМ НИЗКОКАЧЕСТВЕННОГО БОКСИТА ПО ПОСЛЕДОВАТЕЛЬНОЙ СХЕМЕ БАЙЕР-СПЕКАНИЕ 1996
  • Майер А.А.
  • Лапин А.А.
  • Срибнер Н.Г.
  • Паромова И.В.
RU2113406C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ БОКСИТОВ 2004
  • Ибрагимов Алмаз Турдуметович
  • Поднебесный Геннадий Павлович
  • Сынкова Лариса Николаевна
  • Амбарникова Галина Алексеевна
  • Михайлова Ольга Ивановна
RU2257347C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 1999
  • Майер А.А.
  • Лапин А.А.
  • Тихонов Н.Н.
  • Паромова И.В.
  • Матукайтис А.А.
RU2181695C2
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 2003
  • Логинова И.В.
  • Логинов Ю.Н.
  • Ордон С.Ф.
  • Лебедев В.А.
RU2232716C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 2019
  • Логинова Ирина Викторовна
  • Логинов Юрий Николаевич
  • Чайкин Леонид Иванович
RU2711198C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 2012
  • Логинова Ирина Викторовна
  • Логинов Юрий Николаевич
  • Кырчиков Алексей Владимирович
RU2494965C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ 2004
  • Сынкова Лариса Николаевна
  • Еремина Марина Геннадьевна
  • Михайлова Ольга Ивановна
RU2256615C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 2007
  • Логинова Ирина Викторовна
  • Логинов Юрий Николаевич
  • Чайкин Леонид Иванович
  • Молочков Андрей Анатольевич
RU2360865C1
Способ комплексной переработки глиноземсодержащего сырья 2022
  • Фрэж Евгения Владимировна
  • Фрэж Вассим Мунир
  • Бердников Владимир Александрович
RU2787546C1
КОМПЛЕКС ДЛЯ ПЕРЕРАБОТКИ БОКСИТОВОГО СЫРЬЯ 2018
  • Логинова Ирина Викторовна
  • Логинов Юрий Николаевич
RU2709084C1

Иллюстрации к изобретению RU 2 183 193 C2

Реферат патента 2002 года СПОСОБ ПЕРЕРАБОТКИ НА ГЛИНОЗЕМ НИЗКОКАЧЕСТВЕННОГО БОКСИТА

Способ переработки на глинозем низкокачественного боксита относится к цветной металлургии и может быть использован при переработке низкокачественного боксита на глинозем по последовательной схеме Байер-спекание. Способ включает размол боксита на оборотном растворе, выщелачивание его, разбавление вареной пульпы, обескремнивание ее совместно с алюминатным раствором спекательной ветви, сгущение и промывку красного шлама, фильтрацию его, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора и спекового шлама, сгущение алюминатного раствора после выщелачивания спека с получением осветленного алюминатного раствора и серого шлама. Причем серый шлам, полученный после сгущения упомянутого алюминатного раствора, фильтруют с получением фильтрата и кека, последний промывают в течение 0,5-1,0 ч и выводят из процесса. Осветленную часть алюминатного раствора обрабатывают известняковой мукой, в качестве которой можно использовать мраморную пыль, до получения кремневого модуля не ниже 180 единиц и полученную пульпу подают на совместное выщелачивание с раствором ветви Байера, а фильтрат серого шлама обрабатывают совместно с осветленной частью алюминатного раствора. Способ обеспечивает снижение расхода кальцинированной соды, сокращение аппаратурного оформления ветви спекания, снижение примесей железа и кремния в продукционном гидроксиде алюминия. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 183 193 C2

1. Способ переработки на глинозем низкокачественного боксита, включающий размол боксита на оборотном растворе, выщелачивание его, разбавление вареной пульпы, обескремнивание ее совместно с алюминатным раствором спекательной ветви, сгущение и промывку красного шлама, фильтрацию его, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора и спекового шлама, сгущение алюминатного раствора после выщелачивания спека с получением осветленного алюминатного раствора и серого шлама, отличающийся тем, что полученный после сгущения серый шлам фильтруют с получением фильтрата и кека, последний промывают в течение 0,5-1 ч, выводят из процесса, а осветленный алюминатный раствор обрабатывают известняковой мукой до получения кремневого модуля не ниже 180 единиц и полученную пульпу подают на выщелачивание боксита. 2. Способ по п. 1, отличающийся тем, что фильтрат объединяют с осветленным алюминатным раствором и обрабатывают их совместно известняковой мукой. 3. Способ по п. 1, отличающийся тем, что в качестве известняковой муки используют мраморную пыль.

Документы, цитированные в отчете о поиске Патент 2002 года RU2183193C2

СПОСОБ ПЕРЕРАБОТКИ НА ГЛИНОЗЕМ НИЗКОКАЧЕСТВЕННОГО БОКСИТА ПО ПОСЛЕДОВАТЕЛЬНОЙ СХЕМЕ БАЙЕР-СПЕКАНИЕ 1996
  • Майер А.А.
  • Лапин А.А.
  • Срибнер Н.Г.
  • Паромова И.В.
RU2113406C1
Автоклавная установка для вышелачивания боксита 1984
  • Круглов Василий Сергеевич
SU1188101A1
СПОСОБ НАГРЕВА БОКСИТОВОЙ ПУЛЬПЫ 1998
  • Копытов Г.Г.
  • Свинин П.А.
  • Аминов А.Н.
  • Чернабук Ю.Н.
RU2147012C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКВАЖИННОГО ФИЛЬТРА ИЗ ГРАВИЙНОЙ ОБСЫПКИ 2003
  • Стоеш Карл У.
  • Хотон Дейвид Б.
  • Сонниер Джеймс А.
  • Линде Джералд Д.
  • Дегир Джозеф П.
RU2318113C2
Устройство для сушки табака 1989
  • Харитон Михаил Шлемович
  • Сергеев Сергей Семенович
  • Котляр Юлик Калманович
  • Андреев Валерий Павлович
SU1667822A1
US 4426363 А, 17.01.1984
СОСТАВ ДЛЯ ОЧИСТКИ ПОЧВЫ ОТ НЕФТЯНЫХ ЗАГРЯЗНЕНИЙ И СПОСОБ ОЧИСТКИ ПОЧВЫ ОТ НЕФТЯНЫХ ЗАГРЯЗНЕНИЙ 1999
  • Чертес К.Л.
  • Быков Д.Е.
  • Шинкевич М.Ю.
  • Стрелков А.К.
  • Радомский В.М.
  • Атанов Н.А.
  • Графинин А.Ю.
  • Бурлака В.А.
  • Лапкин А.Г.
  • Тараканов Д.И.
RU2175580C2
ЛАЙНЕР А.И
и др
Производство глинозема
- М.: Металлургия, 1978, с.268-273.

RU 2 183 193 C2

Авторы

Поднебесный Геннадий Павлович

Сынкова Лариса Николаевна

Михайлова Ольга Ивановна

Даты

2002-06-10Публикация

2000-05-11Подача