СПОСОБ СОЗДАНИЯ ВРАЩАЮЩЕГО МОМЕНТА В ПОРШНЕВЫХ ДВИГАТЕЛЯХ, ПРЕОБРАЗУЮЩИХ ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ВО ВРАЩАТЕЛЬНОЕ ПРИ ПОМОЩИ КРИВОШИПА Российский патент 2002 года по МПК F02B75/04 F02D15/02 F02D15/04 

Описание патента на изобретение RU2184862C2

Изобретение относится к областям машиностроения, автомобилестроения, всех видов транспорта и предназначается для создания на его базе силовых агрегатов машин и механизмов различного назначения.

Предшествующий уровень техники
Известен способ создания вращающего момента в поршневых двигателях, преобразующих поступательное движение во вращательное при помощи кривошипа, включающий подачу и сжигание топлива или подачу пара или газа под давлением, выпуск отработанных газов или пара, и устройство для его осуществления (И.М. Ленин, А.В.Костров, О.М.Малашкин и др. "Автомобильные и тракторные двигатели", ч. 1, изд. второе, дополненное и переработанное под ред. проф. И.М.Ленина. Изд. Высшая школа, 1976 г., стр. 1-24; С.С.Баландин. "Бесшатунные поршневые двигатели внутреннего сгорания". М., Машиностроение, 1968 г. (1972 г., изд. второе); С.В.Бальян. "Техническая термодинамика и тепловые двигатели", изд. второе, переработанное и дополненное. Л., Машиностроение, 1973 г., стр. 227-254).

За прототип выбран известный способ создания вращающего момента в поршневых двигателях, преобразующих поступательное движение во вращательное при помощи кривошипа, включающий подачу и сжигание топлива или подачу пара или газа под давлением, выпуск отработанных газов или пара, и устройство для его осуществления, содержащее по меньшей мере один рабочий цилиндр, размещенный в нем рабочий поршень, кинематически связанный с коленчатым валом (см. И.М. Ленин, А.В.Костров, О.М.Малашкин и др. "Автомобильные и тракторные двигатели", ч. 1, издание второе, дополненное и переработанное под ред. проф. И.М. Ленина. Изд. Высшая школа, 1976 г., стр.1-24).

Недостатком известного способа и устройства для его осуществления является то, что рабочий ход в цикле начинается от положения кривошипа, соответствующего верхней "мертвой" точке (ВМТ) (именно в этом положении создаются наивыгоднейшие условия сгорания топлива, создается необходимая степень сжатия, создается наивысшее давление газов на поршень), однако именно в этом положении кривошип не передает приложенных к поршню усилий на рабочий вал. В свою очередь, положения кривошипа, соответствующие близким к положению ВМТ, при вращении рабочего вала до начала рабочего хода из-за необходимости воспламенять топливо заранее в известном способе и устройстве препятствуют вращению рабочего вала, а во время рабочего хода при таких положениях кривошипа усилия, приложенные к поршню, практически не создают крутящего момента на рабочем валу в силу конструктивных особенностей кривошипа, что в целом снижает технико-экономические показатели.

Раскрытие изобретения
Задачей предлагаемого технического решения является улучшение технико-экономических показателей, а именно повышение коэффициента полезного действия и величины вращающего момента на рабочем валу путем исключения из рабочего хода в цикле неэффективной зоны работы кривошипа при положениях, близких к соответствующим ВМТ.

Для решения указанной задачи в известном способе создания вращающего момента в поршневых двигателях, преобразующих поступательное движение во вращательное при помощи кривошипа, включающем подачу и сжигание топлива или подачу пара или газа под давлением, выпуск отработанных газов или пара, уменьшают величину рабочего хода в цикле, удерживают или создают необходимую или максимально возможную степень сжатия при вращении рабочего вала после прохождения им положения, соответствующего ВМТ в цикле до начала рабочего хода или во время рабочего хода.

Краткое описание чертежей
На чертеже изображена схема поршневого двигателя, преобразующего поступательное движение во вращательное при помощи кривошипа для осуществления предлагаемого способа.

Поршневой двигатель содержит рабочий цилиндр 1, размещенный в нем рабочий поршень 2, кинематически связанный шатуном 3 с рабочим коленчатым валом 4, дополнительно размещенный в рабочем цилиндре 1 вспомогательный поршень - пробка 5, образующий одним из своих торцов с рабочим поршнем 2 камеру сгорания (зону подачи пара или газа под давлением), другим торцом под действием пружины 6, упирающейся в рабочий цилиндр 1, поджатый к нажимному сектору вспомогательного вала 7, кинематически связанного с коленчатым валом 4, например, цепной передачей (на схеме не показано). Подразумевается наличие систем подачи топлива или пара (газа) под давлением и отвода отработанных газов (пара), например, аналогичных с прототипом (на схеме не показаны).

Поршневой двигатель работает следующим образом.

В рабочем цикле при вращении рабочего вала 4 вспомогательный поршень-пробка 5 под воздействием нажимного сектора вспомогательного вала с нажимным сектором 7 синхронно перемещается с рабочим поршнем 2 от положения, соответствующего ВМТ на величину радиуса нажимного сектора, сжимая пружину 6, и остается в таком положении до достижения рабочим валом 4 положения, соответствующего нижней "мертвой" точке (НМТ), при дальнейшем вращении рабочего вала 4 и кинематически связанного с ним вспомогательного вала с нажимным сектором 7 вспомогательный поршень-пробка 5 под воздействием пружины 6 возвращается в исходное положение.

Таким образом, в описываемом двигателе при помощи вспомогательного поршня-пробки 5 и вспомогательного вала с нажимным сектором 7 уменьшают величину рабочего хода в цикле на величину радиуса нажимного сектора, удерживают или создают необходимую или максимальновозможную степень сжатия при вращении рабочего вала 4 после прохождения им положения, соответствующего ВМТ в цикле до начала рабочего хода или во время рабочего хода, что позволяет исключить неэффективную зону работы кривошипа при положениях, соответствующих близким к ВМТ
Рассмотрим преимущества предлагаемого способа перед известным на примере работы описанного двигателя при подаче пара или газа под давлением от парогенератора (газогенератора). Пусть давление пара (газа) во время рабочего хода в известном и предлагаемом способах будет постоянным и равным Р. Известный способ предполагает рабочий ход в цикле от ВМТ до НМТ или от 0 до 180o по углу поворота кривошипа. Если разбить весь рабочий ход в цикле на три равных части при движении рабочего поршня 2 от ВМТ до НМТ по объему израсходованного пара (газа) в известном способе, то следует выделить средний участок рабочего хода в цикле как наиболее производительный по сравнению с участками начала и конца рабочего хода. При реализации известного способа две части объема пара (газа), израсходованного в начале и конце рабочего хода, израсходованы с меньшим коэффициентом полезного действия. Предлагаемый способ позволяет исключить из рабочего хода кривошипа менее производительные участки начала и конца, имеющие место при реализации известного способа в данном примере. Для реализации предлагаемого способа в данном примере в поршневом двигателе (см. чертеж) следует использовать вспомогательный вал с нажимным сектором 7 с радиусом нажимного сектора, равным одной третьей хода от ВМТ до НМТ рабочего поршня 2, подать пар (газ) под давлением в рабочий цилиндр 1 при вращении рабочего вала 4 после прохождения им положения, соответствующего ВМТ в цикле на угол, соответственно равный перемещению рабочего поршня 2 на треть хода от ВМТ до НМТ, и прекратить подачу пара (газа) после прохождения рабочим поршнем 2 двух третей хода рабочего поршня 2 от ВМТ до НМТ.

В соответствии с вышеизложенным, реализуя предлагаемый способ в поршневом двигателе (см. чертеж), можно осуществить три рабочих хода в трех циклах взамен одного рабочего хода в цикле в известном способе, израсходовав одинаковое количество пара (газа) в обоих случаях, но с более высоким коэффициентом полезного действия.

Повышение коэффициента полезного действия и величины вращающего момента на рабочем валу 4 очевидны и в случае реализации предлагаемого способа в поршневом двигателе (см. чертеж) в режиме двигателя внутреннего сгорания ввиду переноса зоны наивысшего давления газов сгоревшего топлива в начале рабочего хода из зоны ВМТ в известном способе в зону углов положения кривошипа после прохождения им ВМТ в цикле в предлагаемом способе.

Следует отметить, что реализация предлагаемого способа в двигателях внутреннего сгорания может происходить как с воспламенением топлива от постороннего источника, так и в режиме самовоспламенения топлива. Заданная степень сжатия в поршневом двигателе (см. чертеж) определяется взаимным пространственным положением рабочего поршня 2 и вспомогательного поршня-пробки 5, пространственное положение которого может быть задано, равно как и скорость его перемещения относительно рабочего поршня 2 вспомогательным валом с нажимным сектором 7.

Изменяя величину радиуса нажимного сектора вспомогательного вала с нажимным сектором 7, можно моделировать различные режимы работы двигателя (см. чертеж) с учетом режимов нагрузки и желаемой скорости вращения рабочего вала 4.

Похожие патенты RU2184862C2

название год авторы номер документа
ПОРШНЕВОЙ ДВИГАТЕЛЬ, ЕГО ВАРИАНТЫ 2002
  • Кутяев Андрей Алексеевич
RU2286472C2
СПОСОБ СОЗДАНИЯ ВРАЩАЮЩЕГО МОМЕНТА НА РАБОЧЕМ ВАЛУ ПОРШНЕВЫХ И РОТОРНО-ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ, ПОРШНЕВОЙ, РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2006
  • Кутяев Андрей Алексеевич
  • Кутяев Георгий Андреевич
RU2346168C2
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ СО ВСПОМОГАТЕЛЬНЫМ ЦИЛИНДРОМ (ВАРИАНТЫ) 2005
  • Динов Камиль Нажипович
RU2299999C2
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ ЛЕОНТЬЕВА А.А. 2001
  • Леонтьев А.А.
RU2200858C2
СПОСОБ УПРАВЛЕНИЯ АКСИАЛЬНО-ПОРШНЕВЫМ ДВИГАТЕЛЕМ И АКСИАЛЬНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ 2016
RU2634974C2
СПОСОБ УПРАВЛЕНИЯ АКСИАЛЬНО-ПОРШНЕВЫМ ДВИГАТЕЛЕМ И АКСИАЛЬНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ 2016
RU2628831C2
БЕСШАТУННЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ 1996
  • Рюхин Андрей Дмитриевич
  • Чурсинов Вячеслав Евстафьевич
RU2122638C1
БЕСШАТУННЫЙ ОППОЗИТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2011
  • Семенов Александр Алексеевич
  • Савицкий Владимир Яковлевич
  • Дьячков Юрий Алексеевич
RU2482301C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 1990
  • Глен Аллан Даллавей
RU2139431C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С ВЫСОКОЙ СТЕПЕНЬЮ СЖАТИЯ (ЛАД-3) 1997
RU2120045C1

Реферат патента 2002 года СПОСОБ СОЗДАНИЯ ВРАЩАЮЩЕГО МОМЕНТА В ПОРШНЕВЫХ ДВИГАТЕЛЯХ, ПРЕОБРАЗУЮЩИХ ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ВО ВРАЩАТЕЛЬНОЕ ПРИ ПОМОЩИ КРИВОШИПА

Способ предназначен для использования в энергомашиностроении при создании силовых агрегатов машин и механизмов различного назначения. При осуществлении способа подают рабочее тело (пар, газ, топливо) под давлением, а после преобразования энергии рабочего тела выпускают отработанные пары или газы. При этом уменьшают величину рабочего хода в цикле, удерживают или создают необходимую или максимально возможную степень сжатия при вращении рабочего вала после прохождения им положения, соответствующего верхней "мертвой" точке в цикле до начала рабочего хода или во время рабочего хода. Изобретение позволяет расширить функциональные возможности и улучшить технико-экономические показатели. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 184 862 C2

1. Способ создания вращающего момента в поршневых двигателях, преобразующих поступательное движение во вращательное при помощи кривошипа, включающий подачу и сжигание топлива или подачу пара или газа под давлением, выпуск отработанных газов или паров, отличающийся тем, что уменьшают величину рабочего хода в цикле, удерживают или создают необходимую или максимально возможную степень сжатия при вращении рабочего вала после прохождения им положения, соответствующего верхней "мертвой" точке в цикле до начала рабочего хода или во время рабочего хода. 2. Способ по п. 1, отличающийся тем, что регулируют величину рабочего хода в цикле.

Документы, цитированные в отчете о поиске Патент 2002 года RU2184862C2

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
US 5195469 А, 23.03.1993
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
US 4033304 А, 05.07.1977
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
US 5193493 A, 16.03.1993
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Двухтактный двигатель 1949
  • Свистунов И.Б.
SU83014A1

RU 2 184 862 C2

Авторы

Кутяев А.А.

Даты

2002-07-10Публикация

2000-03-27Подача