ХЛАДОСТОЙКАЯ СТАЛЬ Российский патент 2002 года по МПК C22C38/16 

Описание патента на изобретение RU2187574C2

Изобретение относится к области конструкционных низколегированных сталей, применяемых для создания тяжелонагруженных крупногабаритных конструкций, например, корпусов судов, оборудования для морских буровых платформ, сосудов давления и т.д., эксплуатируемых при пониженных (до -50oС) температурах в условиях агрессивных сред типа морской воды.

Широко известны низколегированные стали, содержащие марганец, никель, медь, ванадий, ниобий, алюминий и титан марок 10ХСНД, 15ХСНД, 14Г2АФ, поставляемые по ГОСТ 5521 и ГОСТ 19281.

Однако перечисленные стали не обладают достаточной сопротивляемостью слоистым разрывам, стойкостью против хрупкого разрушения при низких температурах и хорошей свариваемостью.

Наиболее близкой по назначению, химическому составу и комплексу физико-механических и технологических свойств к заявляемой является сталь по а. с. СССР 885324, содержащая, мас.%:
Углерод - 0,07-0,11
Кремний - 0,10-0,40
Марганец - 0,70-1,90
Никель - 0,60-1,60
Медь - 0,01-0,65
Ниобий - 0,001-0,050
Ванадий - 0,01-0,050
Алюминий - 0,02-0,06
Титан - 0,001-0,06
Азот - 0,009-0,02
Железо - Остальное
при этом суммарное содержание никеля и марганца составляет 2,10-2,50 мас.%, а отношение содержания азота к суммарному содержанию алюминия и титана - 0,29-0,31.

Указанная сталь применяется для строительства морских буровых платформ и обладает удовлетворительным комплексом физико-механических и технологических свойств в листах толщиной не выше 40 мм.

Освоение шельфов Крайнего Севера и Дальнего Востока потребовало создание конструкций морских буровых платформ и им подобных крупногабаритных сооружений с толщиной стенки до 70 мм.

Известная сталь не обеспечивает в указанных толщинах необходимую хладостойкость при температурах до -60oС и сопротивляемость слоистым разрушениям по толщине листа.

Целью настоящего изобретения является создание стали, обладающей более высокой хладостойкостью при температурах до -60oС и сопротивляемостью слоистым разрывам по толщине листа при сохранении прочностных свойств и свариваемости на прежнем уровне в сечениях до 70 мм.

Поставленная цель достигается тем, что сталь, содержащая углерод, кремний, марганец, никель, медь, ниобий, алюминий и железо, дополнительно содержит кальций и серу при следующем соотношении компонентов, мас.%:
Углерод - 0,07-0,11
Кремний - 0,2-0,4
Марганец - 0,9-1,7
Никель - 0,6-1,2
Медь - 0,3-0,65
Ниобий - 0,025-0,05
Алюминий - 0,02-0,06
Кальций - 0,005-0,03
Сера - 0,001-0,015
Железо - Остальное
При этом % отношение содержания кальция к сере должно быть не ниже двух а параметр сопротивляемости трещинообразованию при сварке, определяемый по формуле

не должен быть выше 0,23%.

Введение кальция в указанных пределах обеспечивает повышение изотропности стали, увеличение стойкости ее к слоистым разрушениям, т.к. кальций образует с серой малопластичные сульфиды CaS глобулярной формы, которые, в отличие от более пластичных сульфидов марганца MnS, не раскатываются при горячей прокатке в тонкие прослойки и, тем самым, не ослабляют связи между слоями стали по толщине листа. Этот эффект наиболее полно проявляется при отношении содержания кальция к сере не менее двух (Ca/S≥2).

Кроме того кальций способствует повышению верхнего шельфа работы удара на кривой "температура испытания - работа удара" (см. чертеж).

Для обеспечения необходимой хладостойкости при температуре -60oС необходимо, чтобы суммарное содержание никеля и марганца было в пределах 2,1-2,3 мас.%.

Опробование химического состава проводили на стали, выплавленной в промышленной 100-т электродуговой печи и прокатанной на листы толщиной 70 мм. Прокатка листов заканчивалась при температуре 950-1000oС с обжатием в последнем проходе 10-15% и последующей закалкой в воду от температур 800-950oС и высоким отпуском при температуре 640±20oC.

Химический состав предлагаемой и известной стали приведен в табл.1, а результаты испытаний - в табл.2.

Результаты испытаний показали, что предлагаемая сталь обеспечивает тот же комплекс прочностных свойств, как и известная, но в листах большей толщины - до 70 мм. Однако, в значительной степени превосходит в этих толщинах последнюю по изотропности, стойкости к хрупким разрушениям при температурах до -60oС.

Указанные преимущества позволяют значительно расширить диапазон применения стали, повысить надежность и работоспособность изготавливаемых из нее конструкций. Технологичность и трудоемкость изготовления полуфабрикатов в металлургическом производстве не изменилась.

Похожие патенты RU2187574C2

название год авторы номер документа
ДВУХСЛОЙНАЯ ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1991
  • Горынин И.В.
  • Малышевский В.А.
  • Легостаев Ю.Л.
  • Семичева Т.Г.
  • Васильев В.Г.
  • Чернышев В.В.
  • Соболев Ю.В.
  • Кормилицин Ю.Н.
  • Липухин Ю.В.
  • Данилов Л.И.
RU2016912C1
СТАЛЬ 1990
  • Легостаев Ю.Л.
  • Бабицкий М.С.
  • Бусыгин В.В.
  • Горынин И.В.
  • Малышевский В.А.
  • Могильная Е.С.
  • Гончаров А.Ф.
  • Набатов Б.М.
  • Сагиров И.В.
  • Соколов О.Г.
  • Ситченко А.Я.
RU1777383C
ХЛАДОСТОЙКАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2011
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Демидченко Юрий Павлович
  • Малышевский Виктор Андреевич
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Орлов Виктор Валерьевич
  • Маслеников Александр Витальевич
  • Милейковский Андрей Борисович
RU2458176C1
ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ ДЛЯ КОНСТРУКЦИЙ, РАБОТАЮЩИХ В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ 2010
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Сыч Ольга Васильевна
RU2452787C2
СВАРИВАЕМАЯ СТАЛЬ 1992
  • Легостаев Ю.Л.
  • Горынин И.В.
  • Малышевский В.А.
  • Игнатов В.А.
  • Семичева Т.Г.
  • Круглова А.А.
  • Купчиков Г.Н.
RU2009261C1
ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ СТАЛЬ 2008
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Баранов Александр Владимирович
  • Легостаев Юрий Леонидович
  • Владимиров Николай Федорович
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Малахов Николай Викторович
  • Бусыгин Вячеслав Васильевич
  • Голосиенко Сергей Анатольевич
RU2397269C2
ХЛАДОСТОЙКАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2004
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Легостаев Юрий Леонидович
  • Бусыгин Вячеслав Васильевич
  • Голосиенко Сергей Анатольевич
  • Хлусова Елена Игоревна
  • Гейер Владимир Васильевич
  • Зиборов Александр Васильевич
  • Середа Ирина Ричардовна
  • Дубинин Игорь Владимирович
  • Бойченко Виктор Степанович
  • Лесина Ольга Анатольевна
RU2269588C1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ ТОЛСТОЛИСТОВАЯ СТАЛЬ 2009
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Баранов Александр Владимирович
  • Легостаев Юрий Леонидович
  • Владимиров Николай Федорович
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Малахов Николай Викторович
  • Бусыгин Вячеслав Васильевич
  • Голосиенко Сергей Анатольевич
RU2419673C2
ХЛАДОСТОЙКАЯ СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ 2004
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Владимиров Николай Федорович
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Зыков Вячеслав Владимирович
  • Гейер Владимир Васильевич
  • Ордин Владимир Георгиевич
  • Середа Ирина Ричардовна
  • Голованов Александр Васильевич
  • Бойченко Виктор Степанович
  • Лесина Ольга Анатольевна
  • Арианов Сергей Владимирович
RU2269587C1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ ARC-СТАЛЬ 2012
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Хомякова Надежда Федоровна
  • Милюц Валерий Георгиевич
  • Павлова Алла Григорьевна
  • Пазилова Ульяна Анатольевна
  • Афанасьев Сергей Юрьевич
  • Гусев Максим Анатольевич
  • Левагин Евгений Юрьевич
RU2507295C1

Иллюстрации к изобретению RU 2 187 574 C2

Реферат патента 2002 года ХЛАДОСТОЙКАЯ СТАЛЬ

Изобретение относится к металлургии, а именно к составам конструкционных низколегированных сталей для тяжелонагруженных крупногабаритных конструкций, например, корпусов судов, оборудования для морских буровых платформ, сосудов, работающих под давлением, и т.п., эксплуатируемых при пониженных температурах (до -50oС) в условиях агрессивных сред типа морской воды. Предложена хладостойкая сталь, содержащая компоненты в следующем соотношении, мас. %: углерод 0,07-0,11; кремний 0,2-0,4; марганец 0,9-1,7; ниобий 0,025-0,05; никель 0,6-1,2; медь 0,3-0,65; алюминий 0,02-0,06; кальций 0,005-0,03; сера 0,001-0,015; железо - остальное. При этом отношение содержания кальция к сере должно быть не ниже двух, а параметр сопротивляемости трещинообразованию при сварке, определяемый по формуле Pст= С+Si/30+(Mn+Cu)/20+Ni/60+Nb/10, должен быть не выше 0,23%. Техническим результатом изобретения является создание стали с высокой хладостойкостью при температурах до -60oС и с высокой сопротивляемостью слоистым разрывам по толщине листа при сохранении уровня прочностных свойств и свариваемости в сечениях до 70 мм. 2 табл., 1 ил.

Формула изобретения RU 2 187 574 C2

Хладостойкая сталь, содержащая углерод, кремний, марганец, ниобий, никель, медь, алюминий и железо, отличающаяся тем, что она дополнительно содержит кальций и серу при следующем соотношении компонентов, мас.%:
Углерод - 0,07-0,11
Кремний - 0,2-0,4
Марганец - 0,9-1,7
Ниобий - 0,025-0,05
Никель - 0,6-1,2
Медь - 0,3-0,65
Алюминий - 0,02-0,06
Кальций - 0,005-0,03
Сера - 0,001-0,015
Железо - Остальное
при этом отношение содержания кальция к сере должно быть не ниже двух, параметр сопротивляемости трещинообразованию при сварке, определяемый по формуле

должен быть не выше 0,23%.

Документы, цитированные в отчете о поиске Патент 2002 года RU2187574C2

Сталь 1979
  • Горынин Игорь Васильевич
  • Соколов Олег Георгиевич
  • Малышевский Виктор Андреевич
  • Легостаев Юрий Леонидович
  • Грищенко Леонид Владимирович
  • Ельцов Константин Сергеевич
  • Стеценко Николай Васильевич
  • Левицкая Рита Сергеевна
  • Киселев Ян Николаевич
  • Набатов Борис Михайлович
  • Аксаков Игорь Сергеевич
  • Владимиров Николай Федорович
  • Лепехов Виталий Иванович
  • Бусыгин Вячеслав Васильевич
SU885324A1
Сталь 1976
  • Матросов Юрий Иванович
  • Насибов Али Гасан Оглы
  • Литвиненко Денис Ануфриевич
  • Голованенко Сергей Александрович
  • Харчевников Валерий Павлович
  • Пылина Александра Федоровна
  • Зелеченок Борис Юльевич
  • Мулько Геннадий Николаевич
SU623900A1
Хладостойкая сталь 1975
  • Головин Владимир Михайлович
  • Рябов Петр Семенович
  • Бубенщиков Юрий Михайлович
SU570657A1
Конструкционная сталь 1972
  • Юрченко Владимир Иванович
  • Бородин Николай Петрович
  • Матюхин Юрий Филиппович
SU443936A1
СТАЛЬ 1991
  • Лебедев В.В.
  • Белороссова А.С.
  • Ивкина И.Б.
  • Пославский А.В.
  • Борисов В.И.
  • Хазак В.И.
  • Зарина Ж.А.
  • Орестов А.М.
  • Ривкин С.И.
  • Ионов В.А.
  • Литвак В.А.
  • Штейнцайг В.М.
RU2016129C1
НИЗКОЛЕГИРОВАННАЯ ХЛАДОСТОЙКАЯ СТАЛЬ 1990
  • Смирнов Л.А.
  • Панфилова Л.М.
  • Филиппенков А.А.
  • Подольская Э.П.
  • Комратов Ю.С.
  • Василенко Г.Н.
  • Третьяков М.А.
  • Стамбульчик М.А.
  • Литовский В.Я.
  • Чернушевич А.В.
  • Ляпцев В.С.
  • Петренев В.В.
  • Куклинский М.И.
RU2005805C1
US 5820819 А, 13.10.1998.

RU 2 187 574 C2

Авторы

Горынин И.В.

Легостаев Ю.Л.

Малышевский В.А.

Семичева Т.Г.

Маслеников А.В.

Бусыгин В.В.

Зыков В.В.

Тишков В.Я.

Синяков И.Н.

Даты

2002-08-20Публикация

2000-07-05Подача