УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРОДУКЦИИ СКВАЖИНЫ Российский патент 2002 года по МПК E21B47/10 G01F1/74 

Описание патента на изобретение RU2191262C1

Изобретение относится к области средств измерения и может быть использовано в нефтяной, газовой, нефтехимической и других отраслях промышленности для измерения расхода многофазной среды, состоящей из жидкости и газа.

Известно устройство для измерения продукции скважины, содержащее герметичную цилиндрическую емкость с входными и выходными трубопроводами для газа и жидкости, имеющее управляемые запорные органы, преобразователь силы в электрический сигнал и связанные между собой вычислительный блок и гидравлическую и электрическую системы управления. Продукция скважины поступает через входной трубопровод в герметичную емкость, где происходит сепарация попутного нефтяного газа, накопление жидкости от нижнего до верхнего фиксированных уровней и вытеснение газа в измерительную линию. Система управления фиксирует время заполнения емкости жидкостью, вычисляет массу жидкости, количество газа, включает насос откачки жидкости из емкости. После откачки жидкости цикл измерения повторяется [Патент РФ 2059067, кл. Е 21 В 47/00, 1996 г.].

Недостатками указанного устройства являются конструктивная и функциональная сложность, высокая металлоемкость, цикличность измерения, недостаточно полная сепарация газа, что снижает надежность устройства и достоверность результатов измерения.

Известно также устройство для измерения расхода многофазной среды, содержащее входной и выходной трубопроводы, газоотделитель, выполненный в виде соединенных друг с другом вертикальной и горизонтальной труб, газовую измерительную линию с расходомером, жидкостную измерительную линию с массовым расходомером, регулятор уровня жидкости и гидравлическую и электрическую системы управления. Многофазная среда, состоящая из нефти, воды и попутного газа, тангенциально поступает в вертикальную трубу, в которой значительная часть газа отделяется и поднимается вверх. Оставшийся газ переносится потоком жидкости в горизонтальную трубу с большой поверхностью раздела "газ - жидкость", где происходит его дальнейшее отделение от жидкости. Уровень жидкости в горизонтальной трубе поддерживается на заданном значении регулирующим клапаном. После отделения газ поступает в измерительную линию и производится определение его количества. Количество нефти и воды в потоке жидкости измеряется и вычисляется с помощью массового расходомера и его вычислителя. После измерения потоки газа и жидкости снова объединяются и возвращаются в выходной трубопровод [Патент США 6032539, МПК G 01 F 1/74. Web Site: www.accuflow.com].

Недостатками устройства являются громоздкость и большая металлоемкость газового сепаратора. В известном устройстве необходимо точно поддерживать уровень жидкости в горизонтальной трубе сепаратора. При изменении уровня за установленные пределы может быть нарушен процесс измерения.

Изобретение направлено на уменьшение габаритов и металлоемкости устройства с одновременным повышением точности измерения, обеспечением мобильности и расширением области применения.

Это достигается тем, что в устройстве для измерения продукции скважины, содержащем газоотделитель со средством для тангенциального ввода продукции скважины, средством для отвода газа, расположенным в верхней части сепаратора, и средствами для отвода жидкости и продукции скважины, расходомеры газа и жидкости, связанные с вычислительным блоком, газоотделитель выполнен в виде цилиндрической емкости с нижней конусной частью, средство для ввода продукции скважины выполнено в виде сопла и установлено в верхней части емкости, а средство для отвода газа выполнено в виде патрубка, установленного коаксиально с емкостью, причем часть патрубка размещена внутри емкости, выполнена перфорированной и снабжена отражателями, выполненными в виде обращенных основанием вниз усеченных конусов, ниже сопла для ввода продукции установлен ленточный шнек для подвода жидкости к средству для ее отвода, которое установлено в конической части емкости, при этом устройство снабжено насосом для откачки жидкости из емкости и эжектором для смешения газа с жидкостью.

Кроме того, указанная емкость снабжена, по меньшей мере, еще одним соплом для ввода продукции скважины.

Кроме того, ленточный шнек выполнен одно- или многозаходным.

На фиг.1 представлена схема устройства для измерения продукции скважины; на фиг.2 - конструктивная схема газоотделителя.

Устройство включает входной трубопровод 1 с фильтром 2, газоотделитель 3, расходомер 4 газа, насос 5 откачки жидкости, расходомер 6 жидкости, эжектор 7, выходной трубопровод 8, датчик уровня 9 жидкости в газоотделителе, блок управления и вычисления 10.

Газоотделитель 3 представляет собой герметичную цилиндрическую емкость 11 с нижней конусной частью, снабженную тангенциальными соплами 12 для ввода продукции скважины, соединенными с входным коллектором 13, патрубком 14 отвода газа, установленным коаксиально с емкостью 11, и патрубком 15 отвода жидкости, установленным в конической части емкости. Часть патрубка 14 для отвода газа расположена внутри емкости, выполнена перфорированной и снабжена защитными отражателями 16 в виде усеченных конусов для предотвращения попадания капель жидкости в газовую линию. Ниже сопел 12 для ввода продукции установлен ленточный шнек 17 для увеличения поверхности стекания и обеспечения подвода жидкости к патрубку 14 отвода жидкости. Ленточный шнек может быть выполнен одно- или многозаходным. Датчик 9 уровня жидкости расположен в конусной части газоотделителя.

Устройство работает следующим образом.

Продукция скважины через входной трубопровод 1 и фильтр 2 поступает в газоотделитель 3, откуда поток газа направляется в расходомер 4, а жидкость - в расходомер 6, в которых происходит непрерывное измерение, а их количество определяется блоком 10 управления и вычисления. Жидкость с помощью насоса 5 поступает в эжектор 7 и измеряется расходомером 6, который отсасывает газ после измерения. В камере смешения эжектора происходит объединение потоков газа и жидкости, и продукция скважины идет в выходной трубопровод 8.

Газоотделитель работает следующим образом.

Поток продукции через входной коллектор 13 подводится к соплам 12, расположенным тангенцально в верхней части емкости. На выходе из сопел скорость продукции возрастает и ее движение по внутренней поверхности емкости превращается из прямолинейного во вращательное вокруг вертикальной оси с образованием поля центробежных сил. При этом жидкость как более тяжелая часть продукции прижимается к периферии и под силой тяжести по ленточному шнеку 17 опускается в нижнюю конусную часть емкости. Газ как более легкая часть продукции оттесняется жидкостью в направлении оси вращения и через перфорированный патрубок 14 отводится из газоотделителя, а защитные отражатели 16 предотвращают попадание капель в газовую линию. Из конусной части емкости 11 жидкость откачивается насосом 5 с изменяемой производительностью. Уровень жидкости в конусной части емкости поддерживается на заданном значении изменением производительности насоса 5 по сигналу датчика уровня 9 и команде блока управления и вычисления 10. Насос 5 компенсирует потерю давления в соплах 12 и обеспечивает работу эжектора 7.

Использование предлагаемого изобретения позволит по сравнению с прототипом уменьшить габариты и металлоемкость устройства для измерения продукции скважины (устройство по прототипу имеет громоздкую конструкцию трубного газоотделителя), а также повысить точность измерения за счет улучшения качества сепарации газа. Кроме того, предлагаемое устройство характеризуется мобильностью - это передвижные установки (устройство же по прототипу устанавливают стационарно на исследуемую скважину), что повысит эксплуатационные возможности устройства, обеспечит использование устройства в тех отраслях промышленности, где требуется измерение расхода многофазной среды.

Похожие патенты RU2191262C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРОДУКЦИИ СКВАЖИНЫ 2001
  • Никифоров В.В.
  • Никифоров Д.В.
  • Слепян М.А.
  • Филоненко В.И.
  • Насибуллин Р.Н.
RU2195552C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ОПАСНОСТИ ГАЗОДИНАМИЧЕСКИХ ЯВЛЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Бокий Борис Всеволодович
  • Деглин Борис Моисеевич
  • Звягильский Ефим Леонидович
  • Ефремов Игорь Алексеевич
  • Мелконян Ашот Аркадиевич
  • Ставицкий Петр Георгиевич
RU2382202C1
СМЕСИТЕЛЬНАЯ УСТАНОВКА ДЛЯ ПРИГОТОВЛЕНИЯ РАСТВОРОВ 2000
  • Рябоконь С.А.
  • Макушев Н.И.
RU2184204C2
СПОСОБ ИЗМЕРЕНИЯ ПРОДУКЦИИ НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИН 2014
  • Борисов Александр Анатольевич
  • Цой Валентин Евгеньевич
RU2578065C2
Установка для поверхностной перекачки газожидкостной смеси 2019
  • Мусинский Артем Николаевич
  • Одинцов Антон Александрович
  • Байдаров Павел Алексеевич
  • Петров Дмитрий Алексеевич
  • Конюхов Дмитрий Геннадьевич
  • Перельман Максим Олегович
  • Пошвин Евгений Вячеславович
RU2715297C1
СПОСОБ И СИСТЕМА СБОРА, ПОДГОТОВКИ НИЗКОНАПОРНОГО ГАЗА - УГОЛЬНОГО МЕТАНА И ИСПОЛЬЗОВАНИЯ ТЕПЛОВОГО ПОТЕНЦИАЛА ПЛАСТОВОЙ ЖИДКОСТИ (ВАРИАНТЫ) 2010
  • Карасевич Александр Мирославович
  • Пацков Евгений Алексеевич
  • Сторонский Николай Миронович
  • Хрюкин Владимир Тимофеевич
  • Меньщиков Александр Александрович
RU2422630C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЕБИТА НЕФТЯНЫХ СКВАЖИН 2003
  • Абрамов Г.С.
  • Барычев А.В.
  • Плюснин Д.В.
RU2265122C2
Блочная установка кустовой сепарации 2020
  • Третьяков Олег Владимирович
  • Мазеин Игорь Иванович
  • Усенков Андрей Владимирович
  • Мазеин Никита Игоревич
  • Третьяков Александр Владимирович
  • Илюшин Павел Юрьевич
  • Лекомцев Александр Викторович
  • Степаненко Иван Борисович
  • Бурцев Андрей Сергеевич
  • Жигарев Даниил Борисович
  • Силичев Максим Алексеевич
RU2741296C1
СТАНЦИЯ ПЕРЕКАЧКИ И СЕПАРАЦИИ МНОГОФАЗНОЙ СМЕСИ 2013
  • Третьяков Олег Владимирович
  • Бушмакин Игорь Валентинович
  • Топчиенко Юрий Сергеевич
RU2538140C1
СПОСОБ ПЕРЕКАЧКИ ПРОДУКЦИИ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Габдуллин Р.Ф.
  • Салимов Н.В.
RU2152539C1

Иллюстрации к изобретению RU 2 191 262 C1

Реферат патента 2002 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРОДУКЦИИ СКВАЖИНЫ

Изобретение относится к области средств измерения и может быть использовано в нефтяной, газовой, нефтехимической и других отраслях промышленности для измерения расхода многофазной среды, состоящей из жидкости и газа. Техническим результатом изобретения является уменьшение габаритов и металлоемкости устройства с одновременным повышением точности измерения, обеспечением мобильности и расширением области применения. Устройство содержит газоотделитель со средством для тангенциального ввода продукции скважины, средством для отвода газа, расположенным в верхней части сепаратора, и средствами для отвода жидкости и продукции скважины, расходомеры газа и жидкости, связанные с вычислительным блоком. Газоотделитель выполнен в виде цилиндрической емкости с нижней конусной частью. Средство для ввода продукции скважины выполнено в виде одного или нескольких сопел и установлено в верхней части емкости. Средство для отвода газа выполнено в виде патрубка, установленного коаксиально с емкостью. Причем часть патрубка расположена внутри емкости, выполнена перфорированной и снабжена отражателями в виде обращенных основанием вниз усеченных конусов. Ниже сопла для ввода продукции установлен одно- или многозаходный ленточный шнек для подвода жидкости к средству для ее отвода, которое установлено в конической части емкости. Дополнительно устройство снабжено насосом для откачки жидкости из емкости и эжектором для смешения газа с жидкостью. 2 з.п.ф-лы, 2 ил.

Формула изобретения RU 2 191 262 C1

1. Устройство для измерения продукции скважины, содержащее газоотделитель со средством для тангенциального ввода продукции скважины, средством для отвода газа, расположенным в верхней части сепаратора, и средствами для отвода жидкости и продукции скважины, расходомеры газа и жидкости, связанные с вычислительным блоком, отличающееся тем, что газоотделитель выполнен в виде цилиндрической емкости с нижней конусной частью, средство для ввода продукции скважины выполнено в виде сопла и установлено в верхней части емкости, а средство для отвода газа выполнено в виде патрубка, установленного коаксиально с емкостью, причем часть патрубка расположена внутри емкости, выполнена перфорированной и снабжена отражателями, выполненными в виде обращенных основанием вниз усеченных конусов, ниже сопла для ввода продукции установлен ленточный шнек для подвода жидкости к средству для ее отвода, которое установлено в конической части емкости, при этом устройство снабжено насосом для откачки жидкости из емкости и эжектором для смешения газа с жидкостью. 2. Устройство по п.1, отличающееся тем, что указанная емкость снабжена по меньшей мере еще одним соплом для ввода продукции скважины. 3. Устройство по п.1 или 2, отличающееся тем, что ленточный шнек выполнен одно- или многозаходным.

Документы, цитированные в отчете о поиске Патент 2002 года RU2191262C1

US 6032539 А, 07.03.2000
Устройство для измерения дебита скважин 1975
  • Дробах Виктор Терентьевич
  • Зарипов Мидхат Хазиахметович
  • Пестрецов Николай Васильевич
SU577290A1
Установка для сбора и измерения продукции нефтяных скважин 1970
  • Дробах Виктор Терентьевич
  • Зарипов Мидхат Хазиахметович
  • Пестрецов Николай Васильевич
SU467964A1
Устройство для замера дебита скважин 1982
  • Вороненко Анатолий Иванович
  • Алиев Владимир Кязимович
  • Эпштейн Эдуард Маркович
SU1038471A1
Устройство для покомпонентного измерения продукции нефтяных скважин 1988
  • Бурханов Виль Асхатович
  • Варфоломеева Лариса Вильевна
SU1627688A1
Установка для сбора и измерения продукции нефтяных скважин 1988
  • Елисеев Владимир Григорьевич
SU1652521A1
RU 2059067 С1, 27.04.1996
СПОСОБ И ПЕРЕДВИЖНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ НЕФТЯНЫХ И НЕФТЕГАЗОВЫХ СКВАЖИН 1994
  • Середа М.Н.
  • Ланчаков Г.А.
  • Ремезов В.В.
  • Губяк В.Е.
  • Шишкин А.П.
  • Денисенко С.И.
  • Поляков В.Н.
RU2081312C1
ГАЗОВЫЙ СЕПАРАТОР 1996
  • Трулев А.В.
  • Трулев Ю.В.
RU2149990C1
УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ДЕБИТА СКВАЖИН 1997
  • Мельников Н.М.
  • Князев М.А.
  • Скрипченко В.К.
RU2136881C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ГАЗОНАСЫЩЕННОЙ ЖИДКОСТИ 1998
  • Тахаутдинов Ш.Ф.(Ru)
  • Чаронов В.Я.(Ru)
  • Чувашев Виктор Анатольевич
  • Москалев Эдуард Петрович
  • Броди Владимир Янович
  • Железняков Андрей Владимирович
  • Чуванков Виктор Юрьевич
RU2155938C2
СПОСОБ ОХЛАЖДЕНИЯ МЕЛАМИНА 1999
  • Коуфаль Герхард
RU2225863C2
US 4558592 А, 17.12.1985
US 5314018 A, 24.05.1994.

RU 2 191 262 C1

Авторы

Никифоров В.В.

Никифоров Д.В.

Слепян М.А.

Филоненко В.И.

Насибуллин Р.Н.

Даты

2002-10-20Публикация

2001-10-15Подача