Изобретение относится к области приборостроения и может быть использовано в легкой, химической и других отраслях промышленности для перемешивания, эмульгирования и гомогенизации жидких и газообразных многокомпонентных систем, а также для диспергирования твердых частиц в жидкости.
Известен статический смеситель, содержащий колонну с впускным отверстием для суспензии в верхней части, несколькими камерами и насосом. Впускной патрубок для газа расположен в нижней части колонны, так что газ движется наверх, а жидкость вниз (см. патент США N 3495952, B 01 F 3/06.1970).
Недостатком данного смесителя является сложность и значительные габариты. Кроме того, подобный смеситель не может быть встроен в трубопроводах, что ограничивает область его применения.
С целью устранения перечисленных недостатков были разработаны смесители, в которых один из компонентов подавался в зону кавитации или, всяко случае, в зону турбулентного течения второго компонента (см. например, патент Великобритании N 2022430, B 01 F 5/00, 1979). Данный смеситель содержит корпус с продольным патрубком ввода первого компонента и наклонными патрубками ввода второго компонента. Аналогичный смеситель в виде ряда последовательных трубок Вентури описан в ЕПВ N 1057691, B 01 F 5/04, 1985.
Однако смесители подобного типа обладают недостаточной эффективностью.
Известен также кавитационный аппарат, в корпусе которого установлен кавитатор в виде перфорированной крыльчатки с клиновидными лопастями (см. а. с. N 1353858, D 21 B 1/36, 1985).
Недостатком данного смесителя также является низкая эффективность, прежде всего из-за того, что в потоке за кавитатором медленно протекают процессы выделения микропузырьков и их схлопывания.
Наиболее близким к предлагаемому является встраиваемый статический смеситель, образованный цилиндрическим корпусом с патрубками ввода и вывода обрабатываемой среды, в полости которого последовательно размещены завихрители в виде плоских пластин, лопастей и лопаток сложной формы, причем за счет определенной последовательности их установки несколько возрастает степень гомогенизации обрабатываемой среды, так как одни элементы как бы "подготавливают" ее поток для других (см. патент США N 4461579, B 01 F 5/00, 1984).
Однако и данный смеситель достаточно сложен, а кроме того, не обеспечивает высокой степени гомогенизации, поскольку в нем не происходит образования кавитационных каверн и микропузырьков. Данный смеситель обладает высоким гидравлическим сопротивлением. Все это отрицательно сказывается на производительности смесителя.
Таким образом, техническим результатом, ожидаемым от использования статического смесителя, является повышение его производительности за счет одновременного повышения эффективности смешивания и снижения гидравлического сопротивления.
Указанный результат достигается тем, что в известном смесителе, содержащем цилиндрический корпус с патрубками ввода и вывода обрабатываемой среды, в полости которого последовательно размещены завихрители, часть из них выполнена со сквозными отверстиями, при этом завихрители без сквозных отверстий размещены за завихрителями со сквозными отверстиями и образуют с внутренними стенками корпуса канал сверхзвукового профиля. В частности, завихрители со сквозными отверстиями и без них могут быть размещены чередуясь.
При этом отношение наименьшего расстояния между соседними завихрителями со сквозными отверстиями и без них к расстоянию между соседними завихрителями со сквозными отверстиями может лежать в диапазоне 0,32 0,44.
Патрубки ввода одного из компонентов обрабатываемой среды могут размещаться между завихрителями с отверстиями и без них, в зоне кавитации.
Целесообразно выполнять патрубки ввода одного из компонентов обрабатываемой среды с возможностью поступательного и вращательного перемещения.
Рекомендуется также выполнять внутреннюю поверхность корпуса, по меньшей мере между завихрителями с отверстиями и без них, шероховатой, с характерным размером неоднородностей в диапазоне 0,1 0,4 диаметра сквозных отверстий соответствующего завихрителя.
При этом неоднородности могут быть выполнены в виде винтовой линии.
Кроме того, неоднородности могут иметь пилообразное сечение с уклоном в сторону патрубка вывода обрабатываемой среды.
На фиг. 1 представлен продольный разрез смесителя, на фиг. 2 и 3 показаны возможные виды неоднородностей на внутренней поверхности его корпуса, а на фиг. 4 приведен график изменения скорости потока обрабатываемой среды вдоль смесителя.
Смеситель содержит цилиндрический корпус 1 с входным патрубком (каналом, штуцером) 2 и выходным патрубком (каналом ) 3. В полости корпуса 1 установлены завихрители 4, за которыми размещены трубки 5 с изогнутым концом. Часть завихрителей 4 выполнена со сквозными отверстиями 6. Трубки 5 установлены в отверстиях корпуса (не обозначены).
Каналы 2, 3 могут быть выполнены коническими, соответственно сужаясь и расширяясь по ходу потока. В полости корпуса 1 также могут быть конические участки (диффузоры и конфузоры), обеспечивающие, вместе с завихрителями 4, возникновение зон кавитации, т.е. зон, в которых в процессе использования смесителя развивается кавитационная клавиатура, расположенных за соответствующим завихрителем 4 с отверстиями 6. В простейшем случае такой зоной можно считать объем, полученный в результате симметричного преобразования завихрителя 4 относительно плоскости его основания.
В предлагаемом смесителе могут быть использованы как конические завихрители, так и завихрители в виде призмы, пирамиды, полусферы, крыльчатки, клина и т.п.
Для установки трубок 5 с возможностью фиксированного перемещения, т.е. перемещения в процессе настройки смесителя и фиксации в процессе его работы, можно воспользоваться скользящей посадкой трубок 5 в соответствующих отверстиях или резьбой, предпочтительно с большим шагом. Могут быть использованы и автоматические механизмы, осуществляющие осевое перемещение и поворот трубок 5 в зависимости от скорости потока и вязкости среды. С этой целью в состав смесителя могут быть введены датчики расхода наиболее и наименее вязкого компонентов смеси, выходы, которых подключены ко входам блока обработки, выходы которого соединены с соответствующими узлами регулировки положения трубок 5. Алгоритм работы блока обработки задается вышеприведенными соотношениями, а входящие в них константы определяются экспериментально для каждой трубки 5 по минимуму числа рециркуляций, необходимых для достижения определенной степени гомогенизации смеси на выходе канала 3. Величины смещения трубок 5 и углы их поворота могут устанавливаться и одинаковыми для всех трубок.
Трубки 5 могут быть соединены общим патрубком ввода второго компонента (на чертеже не показан), т.е. являться последовательными отводами данного патрубка. При этом патрубка 5, расположенная за последним завихрителем 4, является первой по ходу потока второго компонента.
Под характерным размером неоднородностей обычно понимают их наибольший размер, в данном случае максимальную высоту. Для нерегулярных неоднородностей следует пользоваться усредненными величинами.
Таким образом, особенностью предлагаемого смесителя является то, что в нем обязательно присутствуют завихрители (кавитаторы) 4 с отверстиями 6 и без них, причем завихрители без отверстий всегда размещены за завихрителями с отверстиями. Например, обозначив завихрители без отверстий буквой "Б", а завихрителя с отверстиями буквой "О", получим следующие возможные комбинации: ОБОБ (фиг. 1), ОБО, ОББ, ОББО, ОБОБО, БОБ, ОББОББ, БОБО, ОБ. А вот сочетание БО является запрещенным (неэффективным).
Для приведенного на фиг. 1 сочетания оптимальным является отношение 1/L в диапазоне 0,32 0,44.
На фиг. 2 обозначено: V скорость потока, Vs скорость звука (в двухфазном газожидкостном потоке эта величина не превышает 20 м/с). Наличие канала сверхзвукового профиля означает превышение в этом канале скоростью потока величины Vs.
Смеситель работает следующим образом. Основной поток обрабатываемой среды (первый компонент смеси, в качестве которого может выступать и предварительно подготовленная смесь веществ) подается в полость корпуса 1 через канал 2. При прохождении потоком завихрителей 4 с отверстиями 6, особенно при наличии в полости корпуса диффузоров и конфузоров, за ними образуются кавитационные каверны, в которых происходит интенсивной дробление и перемешивание компонентов смеси. Второй компонент (чисток вещество или некоторая смесь компонентов), если он не поступает через патрубок 2, подается по трубкам 5 непосредственно в зону кавитации, что способствует более интенсивному перемешиванию. Дальнейшему увеличению степени гомогенизации способствует выбор оптимальных положений трубок 5 при обработке конкретной смеси.
При обтекании обрабатываемой средой кавитатора 4 без сквозных отверстий, образующего со стенками 7 канал сверхзвукового профиля, вследствие снижения давления из жидкости выделяются микропузырьки газа, которые схлопываются на поверхности образующейся за кавитатором каверны. Смесительнодробящее воздействие усиливается ударными волнами, возникающими в канале сверхзвукового профиля.
Нами было установлено, что наибольшая эффективность смешивания обеспечивает при чередовании завихрителей 4 с отверстиями 6 и без них, причем только при размещении завихрителя без отверстий за завихрителем с отверстиями.
Дальнейшему повышению эффективности смесителя и повышению его производительности способствуют неоднородности корпуса 1, участвующие в возникновении резонансных колебаний кавитационных каверн.
Таким образом, предлагаемый смеситель несложен в изготовлении и эксплуатации и высокопроизводителен, прежде всего за счет интенсификации схлопывания микропузырьков.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ТОПЛИВА И СТАТИЧЕСКИЙ СМЕСИТЕЛЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2097408C1 |
КАВИТАЦИОННЫЙ РЕАКТОР | 1995 |
|
RU2088321C1 |
СМЕСИТЕЛЬ | 1995 |
|
RU2079352C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ | 1996 |
|
RU2120471C1 |
СМЕСИТЕЛЬ | 1994 |
|
RU2081689C1 |
КАВИТАЦИОННЫЙ СМЕСИТЕЛЬ | 1994 |
|
RU2081688C1 |
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ЖИДКОГО ТОПЛИВА | 1994 |
|
RU2105042C1 |
СПОСОБ СЕПАРАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2209183C2 |
СПОСОБ РЕГЕНЕРАЦИИ ДОННЫХ ОТЛОЖЕНИЙ МАЗУТОХРАНИЛИЩ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2139467C1 |
СПОСОБ ГИДРОДИНАМИЧЕСКОЙ МИКРОПУЗЫРЬКОВОЙ РЫБОЗАЩИТЫ ВОДОЗАБОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2144107C1 |
Сущность изобретения: статический смеситель содержит цилиндрический корпус с патрубками ввода и вывода смешиваемых компонентов, установленные в корпусе последовательно завихрители со сквозными отверстиями и расположенные между ними с образованием со стенками корпуса канала сверхзвукового профиля завихрителя без отверстий, при этом один из последних расположен в этом ряду последним. 5 з.п. ф-лы, 4 ил.
Патент США N 3495952, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ПРОТОЧНЫЙ ГАЗОРАЗРЯДНЫЙ CO-ЛАЗЕР | 1992 |
|
RU2022430C1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Патент США N 4461579, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-05-20—Публикация
1994-05-18—Подача