БЕЗДЫМНЫЙ СПОСОБ И ИЗДЕЛИЕ, ИСПОЛЬЗУЮЩЕЕ КАТАЛИТИЧЕСКИЙ ИСТОЧНИК ТЕПЛА ДЛЯ КОНТРОЛЯ ПРОДУКТОВ СГОРАНИЯ Российский патент 2003 года по МПК A24D1/04 A24D3/00 A24F1/00 A24F13/00 A24F17/00 A24F25/00 A24B15/18 

Описание патента на изобретение RU2195849C2

Предыдущие предложения заключались в использовании катализаторов в изделиях для курения, где катализатор смешивается с углеродным материалом, чтобы образовать горючий топливный элемент (патент США 5211684). Также было предложено использовать аэрозольное исходное вещество из керамического материала для образования аэрозоля в изделии для курения (патент США 5115820). Также было предложено покрытие горючего в сигарете курильщика оксидом церия (патент США 5040551).

В широком смысле, настоящее изобретение включает в себя сигарету и способ ее создания и действия, включающую тепловой источник, аэрозольную часть ароматизатора и мундштук, где источник тепла включает камеру смешения жидкого горючего и воздуха и камеру катализатора горения, в которой смесь горючего с воздухом сгорает под влиянием катализатора.

Изобретение включает способ контролирования продуктов сгорания, включая количества образующейся окиси углерода. Такой контроль обнаруживается в конструкции и действии расположения субстрата катализатора, включая матрицу носителя и покрытия на ней, которые могут включать одно или более алюминиевых покрытий, покрытие оксидом церия и, наконец, покрытие хлоридом платины/палладия. Покрытия оксидов и благородных металлов являются каталитическими.

Сигарета по настоящему изобретению включает секцию смешивания горючего с воздухом, которая вмещает резервуар жидкого абсорбента, содержащего жидкое горючее. Воздух перемещают через резервуар, чтобы захватить частицы горючего, образуя смесь для подачи в камеру каталитического сгорания. Продукты сгорания протягивают через часть ароматизатора, включающую глицерин, чтобы производить аэрозоль на основе глицерина. Ароматизированный аэрозоль затем подается в мундштук курильщика.

Сигарета по настоящему изобретению имеет размеры и общий внешний вид традиционных сигарет.

Фиг. 1 представляет собой чертеж изделия для курения по настоящему изобретению.

Фиг.1а представляет собой разрезанный вид вдоль линии la-la на фиг.1.

Фиг.2 представляет собой тот же самый вид, как и фиг.1, кроме того показывая схему потоков воздуха, смеси горючего с воздухом и аэрозоля в течение курения.

Фиг.3а-d представляют собой виды в перспективе сотовых материалов, использованных в настоящем изобретении.

На чертежах сигарета или изделие для курения 10 включает секцию фильтра мундштука 11, секцию ароматизации 12, аэрозольную секцию 13, секцию хранения горючего и смешивания с воздухом 16 и секцию каталитического горения 17. Сигарету 10 огранивают внешней цилиндрической бумажной оберткой 10r, которая может быть одинарным куском оберточной бумаги или составлена из скрепленных или перекрывающихся секций. Может быть использована дополнительная оберточная или армированная бумага.

Секция мундштука 11 представляет собой фильтр для фильтрования газов сигареты 10 и может быть обычным сигаретным фильтром. Секция ароматизатора представляет собой, главным образом, резаный табак 12а, включающий разрыхлитель или другие материалы и ароматизирующие вещества, чтобы усилить вкус газов, достигающих рта курильщика. Предпочтительно резаный табак 12а заполняет пространство между секцией мундштука 11 и веществом носителя для аэрозоля 19.

Секция аэрозоля 13 включает набивку носителя аэрозоля 19 с нанесенным на него глицерином. Альтернативно глицерину могут быть использованы многоатомные спирты, такие как пропиленгликоль. Вещества для поддержки аэрозоля могут включать углеродный мат, оксид магния, оксид алюминия, стеклянные гранулы, вермикулит, уголь, алюминиевую фольгу и бумагу, покрытую подвергнутыми гидролизу органосилоксанами. Вещество, образующее аэрозоль, может быть также добавлено/введено в резаный табак или воспроизведенный материал типа табака. Когда горячие газы сгорания, включающие пары воды, СO2 и СО, заставляют протекать через набивку 19, то образуется глицериновый аэрозоль.

Секция хранения горючего и смешивания с воздухом 16 включает находящиеся по окружности боковые вентиляционные отверстия 21, через которые внешний воздух поступает в сигарету 10, когда ее курят, как это будет объяснено далее. Секция 16 включает резервуар абсорбента горючего 22, включающий материал фитиля, для хранения жидкого горючего в количествах, находящихся в диапазоне от примерно 300-500 микролитров (мкл). Резервуар абсорбента горючего состоит из синтетического волоконного материала фитиля для передачи жидкости, который использует капиллярное действие. Предпочтительно в осуществлении на практике данного изобретения используются фитили марки Трансорб. Резервуар 22 может включать любой подходящий материал для удерживания жидкого горючего и для того, чтобы давать возможность ему смешиваться с воздухом при температуре, давлениях и скоростях потока воздуха, имеющихся в сигарете 10. Предпочтительное горючее представляет собой жидкий абсолютный этанол. При комнатной температуре предпочтительными являются отношения этанола к воздуху, находящиеся в диапазоне от 3,3 до 19,0 (по объему).

Могут использоваться другие горючие жидкости, как, например, спирты, сложные эфиры, углеводороды, метанол, изопропанол, гексан, метилкарбонаты спиртовых ароматических веществ и т.д. Далее, могут быть использованы тепловыделяющие горючие вещества, которые представляют собой относительно нелетучие предшественники горючего, состоящие из летучего компонента горючего, химически или физически связанного с материалом носителя. При нагревании летучий компонент носителя освобождается. Такое горючее имеет преимущество предотвращения потерь от испарения в течение хранения и обеспечения высвобождения горючего в контролируемых и ограниченных количествах, достаточных для сгорания и генерирования тепла. Примерами горючего, освобождающегося под действием тепла, являются метанол метилкарбонат, диметилкарбонат, триэтилортоформиат, спирт абсорбированный на цеолите или молекулярных ситах и горючее марки "STERNO".

И, наконец, каталитическое действие происходит в секции 17, которая включает трубку подачи смеси 24 и внутреннюю содержащую катализатор керамическую трубку 16, которая содержит сотовый материал 25, применяя фрикционную посадку или другие способы присоединения. Керамические трубки 24, 26 состоят из плотного муллита (3Аl2O3•2SiO2) в стеклянной матрице. Этот материал является тонкозернистым, работающим при высокой температуре и непористым. Этот материал имеет насыпной удельный вес, равный 2,4; рабочую температуру 1650oС и прочность при изгибе 137895,2 кПа (20000 фунтов на квадратный дюйм). Трубки 24 и 26 предпочтительно делают из теплостойкого материала, как, например, MV20 муллитовых керамических трубок, изготовленных McDanel Refractory Co. Каталитический элемент 25, который предпочтительно представляет собой Celcor или Celcor 9475 сотовый керамический материал 15, покрывают оксидом алюминия, затем покрывают каталитическим покрытием, включающим в себя оксид редкоземельного или переходного металла, как, например, оксид церия (IV), и наконец покрывают каталитическим покрытием, включающим раствор благородного металла, предпочтительно палладия или платины. После такой обработки покрытиями сотовый субстрат 25 (см. фиг.3а-d) помещают в трубку сигареты 26 (фиг. 1, 1а и 2). В добавление к керамическому материалу может быть использован любой другой подходящий негорючий материал для подложки катализатора, как, например, нетканый углеродный мат, графитовый войлок, нить из углеродного волокна, углеродный войлок, тканые керамические волокна, монолитные материалы. Монолитные материалы, также относимые к сотовым материалам, имеются в продаже (например, выпускаемые Corning Glass Works, Corning, NY). Вместо оксида церия могут быть использованы Та2O5, ZnO, ZrO2, МgТiO3, LаСоО3, RuО2, СuО, MnO2 и ZnO.

Сотовый субстрат 25 имеет низкое падение давления, высокую площадь поверхности и высокую тепловую и механическую стойкость. Сотовые структуры имеют низкое падение давления (разница в давлении, создаваемая при пропускании воздуха через подложку) по сравнению с плотно упакованными волоконными керамическими материалами. Типичное падение давления сигареты (сопротивление затягиванию) равно пяти (5) дюймам (12,7 см) воды (измерительный прибор), когда такое давление измеряют у ротового конца сигареты. Сотовый материал предпочтительно имеет квадратные ячейки и формулу 2МgО•2Аl2O3•5SiO2. Сотовый материал имеет открытую пористость, равную 33%; средний размер пор 3,5 микрона, коэффициент термического расширения (25-1000oС • 10-7/oС), равный 10, и температуру плавления, равную примерно 1450oС. Сотовый материал образует гетерогенный катализатор.

Что касается фиг. 3а, сотовый заполнитель 25 включает шестнадцать (16) ячеек 29. Размеры сотового заполнителя 25 равны а=5,7 мм, b=5,7 мм и с равно 7 мм. На фиг.3b сотовый заполнитель 25 включает девять (9) ячеек 29. Размеры сотового заполнителя 25 равны d=4,5 мм; е=4,5 мм и f равно 7 мм. На фиг.3с и 3d размеры g= 13,09±1,17, h= 4,3 мм; i= 1,8 мм; =1,8 мм; k=4,3 мм; l= 12,29±0,69 мм; m= 2,0 мм и n=3,0 мм. Фиг.3с показывает элемент с пятью (5) ячейками и фиг.3d показывает элемент с двумя (2) ячейками.

Следующий за промывочным покрытием стабилизатора, который представляет собой оксид алюминия, причем промывочное покрытие стабилизируют для присутствия в приборе высокой температуры, сотовый субстрат 25 получает каталитическую обработку. Конфигурации Целкор Кордиерита, иллюстрированные на фиг. 3а-d, были катализированы посредством обработки, как изложено в следующих примерах.

Пример 1
Две сотни (200) элементарных звеньев монолитного керамического сотового материала Целкор Кордиерита # 9475 (2MgO•2Al2O3•5SiO2, покрытого δ-Al2O3 стабилизатором для работы при высокой температуре, диаметр: 4 дюйма (10,16 см); высота: 1 дюйм (2,54 см); имеющего 400 ячеек на квадратный дюйм) разрезали на монолитные элементы с квадратным сечением, включающие в себя девять (9) ячеек с размерами 4,5 мм • 4,5 мм • 7 мм (фиг.3b). Сотовый материал осушили на воздухе при 110oС в течение примерно от 0,5 до 3 часов, чтобы уменьшить уровень окклюдированной или адгезионной жидкости (включая Н20). Двести (200) элементов затем были введены в нагретый (90oС) раствор, состоящий из 200 мл деионизированной дистиллированной воды и 17,3692 г Се (NО3)3•6Н2О•Се (NО3)3, растворимого в воде. Монолитные элементы, которые перемешивали вручную каждые 10 минут, держали в нагретом растворе в течение получаса. После удаления из раствора избыток жидкости сдули с элементов монолита сжатым воздухом. Затем элементы монолита поместили в стеклянную чашку Петри и нагрели при 60oС на горячей плитке в течение 20 минут. Монолитные элементы были затем осушены на воздухе при 110oС в течение 1 часа. Вышеописанная обработка была повторена еще два раза, чтобы дать 3 общих обработки раствором Се(NО3)3. После третьей и последней обработки монолитные элементы осушили на воздухе при 110oС в течение ночи для того, чтобы в значительной степени осушить пропитанный материал и затем прокалили на воздухе при 550oС в течение 5 часов.

Двести (200) элементов, импрегнированных таким образом Се(NО3)3, разделили на четыре (4) равные партии. Каждая партия была обработана одним из четырех различных растворов PdCl2.

Раствор 1
2% (вес/объем) раствор Pd, приготовленный разбавлением 15,7233 мл раствора PdCl2 (0,0318 г Pd/мл) до 25 мл деионизированной водой.

Раствор 2
1% (вес/объем) раствор Pd, приготовленный разбавлением 15,7233 мл раствора PdCl2 (0,0318 г Pd/мл) до 50 мл деионизированной водой.

Раствор 3
0,5% (вес/объем) раствор Pd, приготовленный разбавлением 15,7233 мл раствора PdCl2 (0,0318 г Pd/мл) до 100 мл деионизированной водой.

Раствор 4
0,25% (вес/объем) раствор Pd, приготовленный разбавлением 15,7233 мл раствора PdCl2 (0,0318 г Pd/мл) до 200 мл деионизированной водой.

Пятьдесят (50) монолитных элементов, импрегнированных Се(NО3)3, добавили к раствору 1 и нагрели до 70-80oС. Пятьдесят (50) монолитных элементов добавили к каждому из других растворов 2-4 таким же образом. В каждом случае монолитные элементы, которые вручную перемешивали в течение 10 минут, держали в нагретом растворе в течение 1 часа. После удаления из раствора избыток жидкости сдули с монолитных элементов сжатым воздухом. Затем монолитные элементы поместили в стеклянную чашку Петри и нагрели при 60oС на горячей плитке в течение 20 минут.

Монолитные элементы были затем осушены на воздухе при 110oС в течение ночи и затем прокалены на воздухе при 550oС в течение 5 часов. Обработанные таким образом элементы были обнаружены полезными в осуществлении на практике настоящего изобретения.

Пример 2
Примерно триста (300) осушенных монолитных элементов, состоящие из двух (2) ячеек (фиг.3d) с размерами 3 мм•3 мм • 12,3 мм, пропитали Се(NО3)3•6H2O в манере, сходной с той, что описана в примере 1, за исключением того, что использовали 26,0538 г Се(NО3)3•6Н2О в 150 мл деионизированной дистиллированной воды.

Сто из трехсот (300) монолитных элементов, импрегнированных Се(NО3)3, обработали нагретым (70oC) раствором, содержащим 1,6667 г PdCl2, 0,25 мл H2PdCl6, (8 вес. % раствор в воде), 10 мл НСl (1М) и 90 мл деионизированной дистиллированной воды в манере, сходной с той, что описана в примере 1. Сто обработанных элементов были обнаружены полезными в осуществлении на практике настоящего изобретения.

Пример 3
Примерно 60 осушенных девяти (9) ячеечных монолитных элементов были пропитаны Се(NО3)3•6Н2О способом, сходным с тем, что описан в примере 1, за исключением того, что было использовано 8,6846 г Се(NO3)3•6Н2О в 100 мл деионизированной дистиллированной воды.

Примерно 30 из импрегнированных Се(NO3)3 монолитных элементов были обработаны нагретым раствором (90oС), содержащим 6,445 г ZrCl2O•8H2O в 100 мл деионизированной дистиллированной воды. Монолитные элементы, которые вручную перемешивали каждые 5 минут, держали в нагретом растворе в течение 0,5 часа. После удаления из раствора избыток жидкости сдули с монолитных элементов сжатым воздухом. Затем монолитные элементы поместили в стеклянную чашку Петри и нагрели при 60oС на горячей плитке в течение 20 минут. Монолитные элементы были затем осушены на воздухе при 110oС в течение 1 часа.

Вышеописанную обработку повторили еще два раза, чтобы дать 3 общие обработки раствором ZrCl2O•8H2O. После третьей и последней обработки монолитные элементы осушили на воздухе при 110oС в течение ночи для того, чтобы в значительной степени осушить импрегнированный материал, и затем прокалили на воздухе при 720oС в течение 5 часов. Около тридцати элементов были обнаружены полезными в осуществлении на практике настоящего изобретения.

Пример 4
Пятнадцать (15) обработанных элементов монолита из примера 3 были добавлены к 0,005 вес. % раствору Pt, приготовленному разбавлением 0,125 мл раствора хлорида платины (8 вес. % Pt в воде) до 200 мл деионизированной дистиллированной водой. После того, как они были погружены в раствор в течение 10 минут, монолитные элементы удалили и избыток жидкости сдули с элементов монолита сжатым воздухом. Затем монолитные элементы поместили в стеклянную чашку Петри и нагрели при 60oС на горячей плитке в течение 20 минут. Монолитные элементы были затем осушены на воздухе при 110oС в течение ночи и затем прокалили на воздухе при 720oС в течение 5 часов. Приготовленные таким образом пятнадцать элементов были обнаружены полезными в осуществлении на практике настоящего изобретения.

Пример 5
Примерно тридцать (30) осушенных девятиячеечных монолитных элементов были пропитаны ZrCl2O•8H2O способом, сходным с тем, что описан в примере 3.

Пятнадцать (15) пропитанных ZrCl2O•8H2O монолитных элементов были обработаны Се(NO3)3•6H2O способом, сходным с тем, что описан в примере 3, за исключением того, что была использована температура кальцинирования 720oС. Приготовленные таким образом пятнадцать элементов были полезными в осуществлении на практике настоящего изобретения.

Пример 6
Пятнадцать (15) обработанных монолитных элементов из примера 5 были обработаны 0,005 % раствора Pt способом, сходным с тем, что описан в примере 4.

Керамический элемент из кордиерита может иметь плотность ячеек от 9 до 400 ячеек/дюйм2. Такие ячейки покрыты однородным слоем гамма (γ) оксидом алюминия, чтобы увеличить стабильность и покрытие поверхности в сто раз или более, как описано в вышеприведенных примерах. Как правило, покрытие оксидом алюминия в свою очередь покрывают раствором Се(NО3)3 или суспензией оксида церия (оксид церия: CeO2). Нитрат церия Се(NО3)3 является более предпочтительным потому, что может быть получено более однородное покрытие. Соединения церия, включающие оксалат, карбонат или нитрат церия (III), могут быть использованы в качестве исходных материалов при условии, что их превращают в оксид церия (IV) перед использованием в настоящем изобретении. Наконец, на покрытие, содержащее церий, применяют третье покрытие разбавленного раствора хлорида платины или хлорида палладия. Эти покрытия катализаторов, когда они активированы (когда инициируют горение), генерируют температуры от примерно 700oС до 1000oС. Высокие температуры помогают в достижении полного сгорания жидкого топлива и воздушной смеси и достижении дальнейшего сгорания окиси углерода (СО).

При действии сигареты 10 курильщик раскуривает секцию мундштука 11, вызывая поток внешнего воздуха через боковые отверстия 21 в секцию хранения горючего и смешивания с воздухом 16 и, кроме того, внешний воздух протекает через концевое отверстие 31 в секции 17 (смотри шесть (6) стрелок потока, воздуха AF1-AF4 и стрелки B1 и В2 (фиг.2)). Поток внешнего воздуха, представленный стрелками AF1-AF4, проходит через резервуар, содержащий горючее этанол, где образуется смесь горючее/воздух. Смесь воздух/горючее насыщают, когда она выходит из резервуара 22. Отношение воздух/горючее увеличивают воздухом, затягиваемым через отверстие конца сигареты 31, прежде чем смесь контактирует с поверхностью катализатора на сотовом материале 25. Каталитические поверхности, через которые протекают газы, равны примерно от 16 до 65 м2/г. Смесь горючее/воздух меняет направление и начинает течь по направлению к мундштуку 11. В то время как смесь воздух/горючее течет, она приходит в контакт с покрытым керамическим сотовым материалом 25 внутри трубки 26, когда сигарета 10 зажжена традиционной зажигалкой посредством приложения зажигалки к области отверстия на конце сигареты 31. Когда газы продолжают двигаться к мундштуку 11, они нагреваются каталитическим горением (смотри стрелки AR1-AR4; фиг.2). Поток газа продолжается через трубку подачи 27.

Когда курильщик продолжает раскуривать сигарету 10, газы сгорания проходят из нагнетающей трубки 27 через набивку носителя, содержащего глицерин 19, образуя глицериновый аэрозоль, который протекает через секцию 10, захватывая аромат от резаного табака 12а. Аэрозоль, нагруженный ароматизированными веществами, наконец, проходит через фильтр мундштука 11 ко рту курильщика. Когда курильщик прекращает раскуривание, катализатор сохраняет достаточное количество тепла в секции 17 так, что, когда курильщик делает вторую и последующие затяжки, горение будет продолжаться без необходимости прикуривать вновь.

Продукты сгорания, покидающие трубку нагнетания 27 и, наконец, достигающие рта курильщика, представляют собой воду, СO2 и СО. Вес СО на сигарету меньше, чем вес, найденный в стандартных сигаретах, продаваемых в настоящее время. Например, сигареты по настоящему изобретению имеют 0,2 мл или ниже СО на сигарету.

Уменьшение содержания СО может быть приписано процедуре, в которой смесь воздуха и горючего проходит через сотовый материал 20, который действует как покрытый и катализатор, как описано здесь. В течение такого потока каталитическое действие вызывает окисление СО в СO2, чтобы существенно уменьшить содержание СО, когда эти газы покидают трубку 27.

Принимая во внимание тепло, генерируемое в секции сгорания 17, эту секцию можно изолировать, используя алюминиевую фольгу/слоистые пластики с бумажным наполнителем, графитовую фольгу, стекловолокно, нетканые углеродные маты и спряденное керамическое волокно. Такая изоляция также поддерживает катализатор при температуре выше температуры его потухания (активации) между затяжками.

Часть изделия для курения, содержащая катализатор, может быть использована вновь. Предполагается, что пакет или картонная упаковка изделий для курения может включать один или более элементов катализаторов, которые курильщик будет присоединять к концу прибора для курения.

Термин "бездымный" означает многое в сигаретной промышленности, а именно устройство, которое скорее нагревает, чем сжигает табак. "Беспламенный" относится к каталитическому сгоранию без пламени, включающему каталитическое окисление летучих органических паров на металле или оксиде металла. Устройство согласно настоящему изобретению является как "бездымным", так и "беспламенным".

Когда все горючее из резервуара 22 израсходовано, сигарета 10 сама гасит себя. Сигарета 10 разработана, чтобы произвести примерно от 6 до 12 затяжек.

Похожие патенты RU2195849C2

название год авторы номер документа
КУРИТЕЛЬНОЕ ИЗДЕЛИЕ, СОДЕРЖАЩЕЕ АЭРОГЕЛЬ 2017
  • Нордског Брайан Кит
RU2732420C2
КУРИТЕЛЬНОЕ ИЗДЕЛИЕ 1994
  • Питер Рекс Уайт
RU2112408C1
ТЕПЛОВЫРАБАТЫВАЮЩИЙ СЕГМЕНТ ДЛЯ СИСТЕМЫ ОБРАЗОВАНИЯ АЭРОЗОЛЯ КУРИТЕЛЬНОГО ИЗДЕЛИЯ 2016
  • Нордског, Брайан Кит
  • Джексон, Таддеус Дж.
  • Даггинс, Донна Уокер
  • Джерарди, Энтони Ричард
RU2744289C2
УСТРОЙСТВО ДЛЯ УМЕНЬШЕНИЯ ВЫДЕЛЕНИЯ ПОБОЧНОГО ДЫМА И СКОРОСТИ ТЛЕНИЯ СИГАРЕТЫ 1997
  • Снейдр Станислав М.
  • Бауэн Ларри
  • Брэкманн Варрен А.
RU2180180C2
КУРИТЕЛЬНОЕ ИЗДЕЛИЕ, СОДЕРЖАЩЕЕ КАТАЛИТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЫМА 2005
  • Кайяни С. Адига
  • Руфус Х. Ханикатт
RU2349234C2
Курительное изделие 1989
  • Томас Альберт Перфетти
  • Гэри Вилбур Воррелл
SU1812955A3
СОСТАВНОЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ ДЛЯ КУРИТЕЛЬНЫХ ИЗДЕЛИЙ И СИГАРЕТА 1993
  • Джек Франклин Клеармэн[Us]
  • Роберт Леонард Мейринг[Us]
  • Джерри Вейн Лоусон[Us]
  • Кеннет Орин Бейкер[Us]
RU2102906C1
ГОРЮЧАЯ КОМПОЗИЦИЯ И ЦИЛИНДРИЧЕСКИЙ ГОРЮЧИЙ ЭЛЕМЕНТ 1994
  • Деннис Майкл Риггс
  • Двейн Вилльям Бисан
  • Билли Тайрон Коннер
RU2120781C1
Курительное изделие 1991
  • Джерри Уэйн Лоусон
  • Вильям Джеймс Казей Ш
SU1836038A3
СПОСОБ НЕПРЕРЫВНОГО ИЗГОТОВЛЕНИЯ ГОРЮЧЕГО КОМПОНЕНТА ДЛЯ ИЗДЕЛИЯ ДЛЯ КУРЕНИЯ И КОМПОНЕНТ ДЛЯ ИЗДЕЛИЯ ДЛЯ КУРЕНИЯ 1993
  • Роберт Леонард Мейринг[Us]
  • Вернон Брент Барнс[Us]
  • Макс Веррен Коул[Us]
  • Кейт Стэнли Мозер[Us]
  • Джефри Кейн Роджерс[Us]
RU2097997C1

Иллюстрации к изобретению RU 2 195 849 C2

Реферат патента 2003 года БЕЗДЫМНЫЙ СПОСОБ И ИЗДЕЛИЕ, ИСПОЛЬЗУЮЩЕЕ КАТАЛИТИЧЕСКИЙ ИСТОЧНИК ТЕПЛА ДЛЯ КОНТРОЛЯ ПРОДУКТОВ СГОРАНИЯ

Изобретение относится к изделию для курения и способу его создания и действия. Изделие образует продукты сгорания, которые используются для образования ароматизированных аэрозольных газов, подаваемых ко рту курильщика. Горячие газы получают в каталитической секции, в которой горючее и воздух сгорают с помощью сотовой покрытой катализатором поверхности, включающей оксид алюминия и соединения церия. Изобретение позволяет контролировать количество образующейся окиси углерода. 6 с. и 53 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 195 849 C2

1. Изделие для курения с секцией мундштука и концевой частью, в котором газы протекают ниже к секции мундштука с множеством секций, расположенных перед мундштуком, содержащее: а. часть теплового источника, расположенную у концевой части для создания газов сгорания, в свою очередь, содержащую 1) боковые вентиляционные отверстия в изделии для обслуживания части источника тепла, через которую поступает внешний воздух; 2) резервуар абсорбента горючего, расположенный дальше от мундштука, чем вентиляционные отверстия, через которые такой воздух течет, для создания смеси воздуха с горючим; 3) секция катализатора сгорания, расположенная дальше от мундштука, чем резервуар горючего, в которую и через которую протекает смесь воздуха с горючим в то время, как эта смесь там сгорает, чтобы образовать газы сгорания, и секция катализатора сгорания включает направляющие средства для изменения направления таких газов от мундштука к мундштуку; 4) канал, расположенный ниже по потоку, связанный с секцией сгорания для выпуска газов сгорания по направлению к мундштуку; b. аэрозольную секцию, в которую и через которую протекают газы сгорания, для получения аэрозоли, и с. секцию табака, в которую аэрозоль течет в то время, как он движется далее вниз к секции мундштука. 2. Изделие по п. 1, в котором секция катализатора сгорания включает сотовый керамический субстрат, покрытый оксидом алюминия, который, в свою очередь, покрыт первым каталитическим покрытием. 3. Изделие по п. 2, в котором первое каталитическое покрытие представляет собой оксид редкоземельного металла. 4. Изделие по п. 2, в котором первое каталитическое покрытие представляет собой оксид переходного металла. 5. Изделие по п. 3, в котором первое каталитическое покрытие включает нитрат церия. 6. Изделие по п. 3, в котором оксид редкоземельного металла представляет собой оксид церия. 7. Изделие по п. 2, в котором субстрат далее покрывают вторым каталитическим покрытием, включающим благородный металл. 8. Изделие по п. 7, в котором благородный металл представляет собой палладий. 9. Изделие по п. 2, в котором оксид алюминия представляет собой гамма-оксид алюминия. 10. Изделие по п. 2, в котором первое каталитическое покрытие содержит оксид церия IV. 11. Изделие по п. 2, в котором первое каталитическое покрытие содержит Се(NO3)3. 12. Изделие по п. 1, в котором резервуар содержит в себе этанол в качестве горючего. 13. Изделие по п. 1, в котором секция сгорания включает субстрат, имеющий плотность ячеек от 1,4 до 62 ячеек/см2 (от 9 до 400 ячеек/дюйм2). 14. Изделие по п. 2, в котором площадь поверхности каталитического покрытия, через которую протекают газы сгорания, равна примерно от 16 до 65 м2/г. 15. Изделие по п. 7, в котором площадь поверхности каталитического покрытия, через которую протекают газы сгорания, равна примерно от 16 до 65 м2/г. 16. Изделие по п. 2, в котором керамический субстрат представляет собой материал кордиерит. 17. Сигарета с мундштуком для получения ароматизированных газов для их втягивания по направлению к мундштуку и через него, содержащая: а) беспламенную часть источника тепла, прилегающую к концевой части мундштука у сигареты для получения нагретых газов, включающую i) элементы резервуара, содержащие горючее; ii) канальные средства, проходящие в элемент резервуара и из него так, что при раскуривании сигареты образуется подходящая смесь воздуха с горючим, которая подается в секцию катализатора сгорания топлива, в которой образуются газы сгорания; iii) такую секцию катализатора сгорания топлива, включающую сотовую подложку, покрытую слоями оксида алюминия, соединения церия и соединения благородного металла; b) средства, вызывающие смену направления движения газов и сгорания, когда они выходят из секции катализатора, и с) секцию ароматизатора, расположенную ниже по потоку от катализатора сгорания топлива, для получения и ароматизации газов сгорания, когда они протекают к мундштуку, посредством чего при зажигании и курении сигареты горячие газы проходят от секции катализатора сгорания горючего через секцию ароматизатора к мундштуку. 18. Сигарета по п. 17, в которой сотовая подложка представляет собой кордиерит со структурой примерно 400 ячеек/дюйм2 (62 ячейки/см2). 19. Сигарета по п. 17, в которой слой соединения церия включает оксид церия. 20. Сигарета по п. 19, в которой слой соединения церия включает нитрат церия. 21. Сигарета по п. 19, в которой слой соединения церия включает оксид церия (IV). 22. Сигарета по п. 19, в которой слои покрытия включают церий и, кроме того, дополнительное покрытие, содержащее благородный металл. 23. Способ получения аэрозоля в сигарете, включающий создание газов сгорания и их транспортировку в сериях затяжек от в первый раз зажженной сигареты до тех пор, пока она не прекратит производство аэрозольных струй через секцию получения аэрозоля ко рту курильщика, содержащий: а) обеспечение корпуса сигареты, имеющего резервуар абсорбента топлива, в котором выбранное количество имеющегося жидкого топлива и воздух с перерывами смешивают для получения смесей горючего с топливом; b) далее обеспечение секции керамического катализатора сгорания, покрытого одним или более каталитическими слоями; с) обеспечение транспортировок таких смесей горючего с воздухом сериями в секцию керамического катализатора сгорания для сгорания там таких смесей в течение сгорания, протекающих: 1) через площадь поверхности таких слоев; 2) причем площадь поверхности является такой, что газы сгорания, получаемые в результате такого прохода таких серий смесей горючего с топливом внутрь и через секцию сгорания и через такую площадь, производят выбранный общий вес СО2, общий вес воды и общий вес СО и где общий вес СО равен примерно 2 мг для такой серии затяжек. 24. Способ по п. 23, в котором обеспечение секции сгорания включает в себя стадии а) обеспечения носителя керамического сотового субстрата в этой секции; b) нанесения покрытия оксида алюминия на носитель субстрата и с) нанесения каталитического покрытия на покрытие из оксида алюминия. 25. Способ подачи газообразных материалов ко рту человека, содержащий: а) обеспечение трубки, имеющей мундштук, и далее обеспечение в ней камеры для получения сотового материала; b) покрытие сотового материала стабилизатором, представляющим собой оксид алюминия; с) сушку покрытого сотового материала; d) помещение сотового материала в водный раствор Cе(NO3)3•H2O; е) перемешивание сотового материала в упомянутом растворе; f) после этого нагревание сотового материала; g) сушку сотового материала и размещение его в такой камере; h) обеспечение секции смешения горючего с воздухом, в которой создается смесь горючего и воздуха, когда человек курит такую трубку; i) обеспечение потока такой смеси горючего с воздухом через сотовый материал в такой камере при условиях сгорания такой смеси горючего с воздухом и j) обеспечение прохождения потока таких газов сгорания вниз через аэрозольную секцию и ко рту человека. 26. Способ по п. 25, в котором на покрытие из оксида алюминия наносят покрытие из оксида церия (IV) и далее наносят покрытие из хлорида палладия на покрытие оксида церия. 27. Способ подачи газов ко рту курильщика, содержащий обеспечение изделия для курения, имеющего боковые стороны, концевую часть мундштука и концевую часть сигареты; размещение боковых вентиляционных отверстий между мундштуком и концевой частью сигареты; расположение внутри изделия резервуара жидкого топлива для получения воздуха, входящего в вентиляционные отверстия, когда курильщик раскуривает изделие; обеспечение протекания смеси горючего и воздуха от резервуара к секции катализатора сгорания с носителем сотового субстрата, служащего носителем для слоев каталитических материалов, где смесь горючего и воздуха сгорает; после этого обеспечение течения газов сгорания по направлению к мундштуку, в течение такого пути они проходят через секцию получения аэрозоля и несожженный табак. 28. Способ по п. 27, в котором секция катализатора сгорания имеет субстрат, покрытый оксидом алюминия. 29. Способ по п. 28, в котором покрытый субстрат имеет на себе первое каталитическое покрытие. 30. Способ по п. 29, в котором первое каталитическое покрытие представляет собой оксид редкоземельного металла. 31. Способ по п. 29, в котором первое каталитическое покрытие представляет собой оксид переходного металла. 32. Способ по п. 29, в котором первое каталитическое покрытие включает нитрат церия. 33. Способ по п. 30, в котором оксид редкоземельного металла представляет собой оксид церия. 34. Способ по п. 28, в котором субстрат далее покрывают вторым каталитическим покрытием, включающим благородный металл. 35. Способ по п. 34, в котором благородный металл представляет собой палладий. 36. Способ по п. 28, в котором оксид алюминия представляет собой гамма-оксид алюминия. 37. Способ по п. 29, в котором первое каталитическое покрытие содержит оксид церия IV. 38. Способ по п. 29, в котором первое каталитическое покрытие содержит Се(NO3)3. 39. Способ по п. 27, в котором резервуар содержит в себе абсолютный этанол в качестве горючего. 40. Способ по п. 27, в котором керамическая секция включает субстрат, имеющий плотность ячеек от 1,4 до 62 ячеек/см2 (от 9 до 400 ячеек/дюйм2). 41. Способ по п. 29, в котором площадь поверхности каталитического покрытия, через которую протекают газы сгорания, равна примерно от 16 до 65 м2/г. 42. Способ по п. 33, в котором площадь поверхности каталитического покрытия, через которую протекают газы сгорания, равна примерно от 16 до 65 м2/г. 43. Способ по п. 28, в котором керамический субстрат представляет собой материал кордиерит. 44. Изделие для курения с мундштуком для получения ароматизированных газов для курения через мундштук, содержащее: а) часть беспламенного источника тепла для получения нагретых газов, включающая: i) элемент резервуара, содержащего жидкое топливо; ii) канальные средства, проходящие в элемент резервуара и из него так, что, когда сигарету раскуривают, образуется подходящая смесь воздух/горючее; iii) секцию катализатора сгорания, в которую втягивают смесь воздух/горючее для сгорания в ней, которая включает сотовый носитель, покрытый слоем оксида алюминия и слоем каталитического покрытия, и которая имеет, таким образом, проход, в котором смесь горючее/воздух сгорает, для образования газов сгорания, которые покидают эту секцию; и b) часть ароматизатора для получения газов сгорания, посредством чего при зажигании и курении изделия для курения газы сгорания проходят от части источника тепла к части ароматизатора и через нее к мундштуку. 45. Изделие по п. 44, в котором каталитическое покрытие представляет собой оксид редкоземельного металла. 46. Изделие по п. 44, в котором каталитическое покрытие представляет собой оксид переходного металла. 47. Изделие по п. 44, в котором каталитическое покрытие включает нитрат церия. 48. Изделие по п. 45, в котором оксид редкоземельного металла представляет собой оксид церия. 49. Изделие по п. 44, в котором секция сгорания далее покрыта вторым каталитическим покрытием, включающим благородный металл. 50. Изделие по п. 49, в котором благородный металл представляет собой палладий. 51. Изделие по п. 44, в котором носитель покрыт оксидом алюминия. 52. Изделие по п. 51, в котором оксид алюминия представляет собой гамма-оксид алюминия. 53. Изделие по п. 44, в котором каталитическое покрытие содержит оксид церия IV. 54. Изделие по п. 44, в котором каталитическое покрытие содержит Се(NO3)3. 55. Изделие по п. 44, в котором элемент резервуара содержит в себе абсолютный этанол в качестве горючего. 56. Изделие по п. 44, в котором сотовый носитель включает в себя субстрат, имеющий плотность ячеек от 1,4 до 62 ячеек/см2 (от 9 до 400 ячеек/дюйм2). 57. Изделие по п. 44, в котором площадь поверхности каталитического покрытия, через которую протекают газы сгорания, равна примерно от 16 до 65 м2/г. 58. Изделие по п. 49, в котором площадь поверхности каталитического покрытия, через которую протекают газы сгорания, равна примерно от 16 до 65 м2/г. 59. Изделие по п. 44, в котором секция сгорания представляет собой материал кордиерит.

Документы, цитированные в отчете о поиске Патент 2003 года RU2195849C2

US 4846199 А, 11.07.1989
US 5240014 А, 31.08.1993
US 5451444 А, 19.09.1995
US 5501234 А, 26.03.1996.

RU 2 195 849 C2

Авторы

Кук Кристофер Дж.

Поло Адриано

Золлер Мэттью Х.

Уолтермайр Бет Е.

Смит Сандра Ф.

Даты

2003-01-10Публикация

1997-12-29Подача