Изобретение относится к вакуумной технике и может быть использовано для создания вакуума в фильтровальных устройствах при фильтрации небольших объемов жидкости в лабораторных условиях, в частности при проведении санитарно-бактериологических анализов.
Для создания вакуума в лабораторной технике, как правило, используют системы, содержащие вакуумный насос и ресивер, где собирается фильтрат [US 5141639, US 5279734]. Основным недостатком таких систем является частая остановка вакуумной системы для слива собранного фильтрата из ресивера и повышенный шум, создаваемый при работе вакуумного насоса.
В настоящее время существуют различные методы решения указанной проблемы.
Наиболее близким по техническому решению и достигаемому результату является устройство, описанное в изобретении (RU 92002399, опубл. в БИ 4, 1995 г.), в котором вакуум создается эжектором, включенным в контур рабочей жидкости: сепаратор - насос - эжектор - сепаратор. При этом фильтрат и попадающие вместе с ним из фильтровального устройства газы выводятся непосредственно из сепаратора в канализацию или в приемную емкость. Основным недостатком указанной вакуумной станции, используемой в лабораторной технике, является небольшой объем сепаратора, что приводит к образованию воронки при поступлении в него рабочей жидкости после эжектора. Наличие воронки в сепараторе приводит к подсасыванию воздуха в контур рабочей жидкости, уменьшению рабочего давления насоса и соответственно вакуума, создаваемого эжектором. Задачей, на решение которой направлено предлагаемое изобретение, является увеличение кпд устройства для создания вакуума за счет уменьшения содержания воздуха в циркуляционном контуре.
Поставленная задача достигается за счет того, что известное устройство для создания вакуума при фильтрации жидкостей выполнено в виде контура для циркуляции рабочей жидкости, включая сепаратор с линией отвода фильтрата и газа, насос, подключенный линией всасывания к патрубку для выхода рабочей жидкости сепаратора, эжектор, имеющий патрубок для всасывания фильтрата, вход эжектора, соединенный с нагнетательной линией насоса, а выход - с входным патрубком рабочей жидкости сепаратора.
При этом входной патрубок рабочей жидкости сепаратора расположен перпендикулярно центральной оси сепаратора ниже уровня жидкости на 0,01÷0,15 м или с противоположной от выходного патрубка стороны сепаратора, причем расстояние между осями входного и выходного патрубков составляет 0,01÷0,15 м, а объем сепаратора составляет (0,15÷2,0)•10-3•Q л, где Q - расход рабочей жидкости в л/ч.
В патентной и научно-технической литературе не выявлены технические решения, содержащие всю заявленную совокупность признаков.
Основным условием создания достаточного вакуума в системе является отсутствие воздуха в рабочей жидкости,который попадает в контур благодаря образованию воронки в сепараторе.
Процесс гашения воронки возможен только при определенных условиях подачи водо-воздушной смеси в сепаратор, т.е. при определенном положении входного патрубка по отношению к уровню жидкости в сепараторе.
Опытным путем установлено, что при положении входного патрубка, близкого к уровню жидкости (выше или даже чуть ниже), не происходит процесс гашения воронки, т. к. струя либо просто пролетает до противоположной стенки сепаратора, либо пробивает тонкий слой воды, не разрушая воронки. В случае, если входной патрубок находится близко к основанию сепаратора, то струя (состоящая из водо-воздушной смеси) рабочей жидкости не пробивает толщу воды, воронка не разрушается, струя не затягивается в воронку, при этом не происходит отделение воздуха и он попадает в рабочий контур, что недопустимо.
Экспериментально установлено, что оптимальным уровнем расположения входного патрубка является 0,01÷0,15 м ниже уровня жидкости.
То же самое происходит в случае, когда входной патрубок находится коаксиально с противоположной от выходного патрубка стороны сепаратора.
Чем ближе к центральной оси сепаратора (на этой же оси расположен выходной патрубок) расположен входной патрубок, тем меньше возможность погасить образовавшуюся воронку, не происходит отделения воздуха и он попадает на вход насоса. Слишком близкое раасположение к боковой стенке сепаратора входного патрубка также не обеспечивает гашение воронки.
Опытным путем установлено, что оптимальным расположением входного патрубка к выходному в случае их нахождения с противоположных сторон сепаратора является расстояние между осями патрубков - 0,01÷0,15 м.
Объем сепаратора также должен удовлетворять следующим условиям: во-первых, объем должен быть достаточным для обеспечения работоспособности всего устройства в целом, а во-вторых, объем сепаратора не должен быть слишком большим, т.к. это приведет к громоздкости конструкции в целом.
Так, в сепараторе слишком маленького объема при слишком больших скоростях потока не будет происходить отделение воздуха и будет сложнее гасить воронку. Неоправданно большой сепаратор обеспечит все требования, но приведет к увеличению сепаратора, что нежелательно, т.к. подобные приборы используются в исследовательских лабораториях, где одним из основных требований является минимальный объем аппаратуры.
Экспериментально установлено, что оптимальным является объем сепаратора (0,15÷2,0)•10-3•Q л, где Q - расход рабочей жидкости в л/ч.
Основные параметры и результаты испытаний вакуумной станции представлены в таблице.
Предлагаемое техническое решение будет понятно из следующего описания и прилагаемых фиг.1,2.
На фиг. 1 изображена вакуумная станция с противоположным расположением входного и выходного патрубков на сепараторе.
На фиг. 2 изображена вакуумная станция с входным патрубком сепаратора, расположенным перпендикулярно оси сепаратора.
На фиг.1,2 и в тексте приняты следующие обозначения:
1. Насос
2. Эжектор
3. Сепаратор
4. Манометр
5. Вакуумметр
6. Кран
7. Кран
8. Нагнетательная линия насоса
9. Входной патрубок
10. Патрубок для входа эжектора
11. Патрубок для отвода газа и фильтрата
12. Выходной патрубок
13. Патрубок для заправки сепаратора рабочей жидкостью
Вакуумная станция в общем случае состоит из насоса 1, эжектора 2, сепаратора 3, связанных между собой соединительными шлангами в контур, предназначенный для циркуляции рабочей жидкости, а также манометра 4, вакуумметра 5, кранов 6, 7.
Насос 1 центробежного типа служит для циркуляции воды в рабочем контуре и создания рабочего давления и потока в эжекторе 2. Эжектор 2 представляет собой водоструйный насос, служащий для создания вакуума. Эжектор 2 на входе присоединен к нагнетательной линии 8 насоса 1, а на выходе через шланг к входящему патрубку 9 сепаратора 3, патрубок входа 10 эжектора 2 подсоединен через кран 6 к фильтровальному устройству и служит для всасывания фильтрата. Сепаратор 3 представляет собой емкость, предназначенную для заправки рабочей жидкости в контур станции, а также для отвода фильтрата и газа из рабочей жидкости через патрубок 11. Сепаратор 3 имеет также патрубок 9 для ввода рабочей жидкости и фильтрата и выходной патрубок 12 для подачи рабочей жидкости к всасывающей линии насоса 1. Патрубок с крышкой 13 служит для заправки сепаратора рабочей жидкостью.
Манометр 4 и вакуумметр 5 установлены на эжекторе и служат для контроля рабочих характеристик вакуумной станции. Кран 6 предназначен для подключения станции к фильтровальному устройству.
Кран 7 служит для опорожнения рабочего контура от жидкости при необходимости.
Вакуумная станция работает следующим образом.
Через патрубок с крышкой 13 заливают рабочую жидкость в сепаратор 3 до уровня патрубка 11, который служит для отвода газа фильтрата. Затем подсоединяют к фильтровальному устройству при помощи шланга и патрубка 10, включают насос 1, открывают кран 6 и происходит циркуляция рабочей жидкости в контуре станции. Благодаря работе эжектора 2 создается вакуум в фильтровальном устройстве и происходит фильтрация пробы воды через мембрану фильтровального устройства. Рабочая жидкость и фильтрат отводится в сепаратор 3, где происходит отвод излишков воды в контур и газа через патрубок 11. При этом благодаря расположению патрубков 9 и 12 относительно друг друга и центральной оси сепаратора происходит гашение образовавшейся в сепараторе 3 воронки струей рабочей жидкости из входящего патрубка 9, что и подтверждается показаниями вакуумметра 5 и манометра 4.
название | год | авторы | номер документа |
---|---|---|---|
ВАКУУМНАЯ СТАНЦИЯ | 2006 |
|
RU2309785C2 |
СПОСОБ СОЗДАНИЯ ВАКУУМА В РЕКТИФИКАЦИОННОЙ КОЛОННЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2343949C2 |
СПОСОБ ОБРАБОТКИ ПРОБ ГРУНТА ДЛЯ ПОСЛЕДУЮЩЕГО ОПРЕДЕЛЕНИЯ ГАЗОНАСЫЩЕННОСТИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2348931C1 |
БАРАБАННЫЙ ВАКУУМНЫЙ ФИЛЬТР | 1993 |
|
RU2086291C1 |
ФИЛЬТР ДЛЯ НЕПРЕРЫВНОЙ ФИЛЬТРАЦИИ СУСПЕНЗИИ ПОД ДАВЛЕНИЕМ | 2014 |
|
RU2671355C2 |
УСТАНОВКА ДЛЯ ОСУШКИ ГАЗОПРОВОДА | 2009 |
|
RU2403517C1 |
УСТРОЙСТВО ДЛЯ НЕПРЕРЫВНОГО АВТОМАТИЧЕСКОГО ФИЛЬТРОВАНИЯ ЖИДКОСТЕЙ | 1997 |
|
RU2106178C1 |
Иглофильтровая водопонижающая установка | 1989 |
|
SU1698376A1 |
ФИЛЬТР | 1997 |
|
RU2124383C1 |
СПОСОБ СОЗДАНИЯ ВАКУУМА ДЛЯ АППАРАТОВ ПЕРЕГОНКИ НЕФТЕПРОДУКТОВ И СИСТЕМА СОЗДАНИЯ ВАКУУМА | 2013 |
|
RU2546116C2 |
Изобретение предназначено для создания вакуума в фильтровальных устройствах при фильтрации небольших объемов жидкости в лабораторных условиях, в частности при проведении санитарно-бактериологических анализов. Устройство состоит из насоса, сепаратора с линией отвода фильтрата и газа, эжектора, соединенные в контур для циркуляции рабочей жидкости. Входной патрубок для рабочей жидкости расположен перпендикулярно центральной оси сепаратора ниже уровня находящейся в сепараторе жидкости на 0,01 - 0,15 м или с противоположной от выходного патрубка стороны, причем расстояние между осями входного и выходного патрубков составляет 0,01-0,15 м. Изобретение обеспечивает увеличение кпд устройства для создания вакуума. 1 з.п.ф-лы, 2 ил., 1 табл.
RU 92002399 A1, 10.02.1995 | |||
НАСОСНО-ЭЖЕКТОРНАЯ УСТАНОВКА (ВАРИАНТЫ) | 1997 |
|
RU2113636C1 |
Устройство для формования трубчатых изделий из жестких бетонных смесей с немедленной распалубкой | 1982 |
|
SU1092044A1 |
Авторы
Даты
2003-02-20—Публикация
1999-12-15—Подача