Предлагаемый способ первичной перегонки углеводородного сырья разработан для покрытия местных потребностей в моторном и котельно-печном топливе в регионах добычи нефти и газового конденсата и на насосных станциях нефтепроводов с целью получения топлива для газотурбинного привода насосов.
Современные крупнотоннажные способы перегонки углеводородного сырья, кроме насосов и теплообменной аппаратуры, включают трубчатые печи и ректификационные колонны. Малотоннажные установки первичной перегонки повторяют принципиальные технологические решения аналогичных установок современных нефтеперерабатывающих заводов. Аппаратурное оформление процесса перегонки отличается высокой металлоемкостью, требует значительных капитальных вложений [1; 2; 3].
Учитывая высокую стоимость и сложность эксплуатации малотоннажных установок для получения моторного топлива, выполненных по технологической схеме крупнотоннажных НПЗ с применением ректификационных колонн и огневых трубчатых печей, разрабатываются нетрадиционные технологические решения первичной перегонки углеводородного сырья.
Так, например, в США такие установки применяются для производства дизельного и газотурбинного топлива из перекачиваемой нефти для покрытия потребности в топливе привода насосов магистральных нефтепроводов.
"Обычно НПЗ малой мощности имеют высокую капитальную стоимость и их эксплуатация обходится дорого. Такие НПЗ используются для производства дизельного и газотурбинного топлива из нефти, перекачиваемой по трубопроводу. Как правило, такие НПЗ применяют ту же схему перегонки нефти, как и крупнотоннажные, и уже само по себе использование ректификационной колонны делает такой завод неэкономичным.
На двух установках в штате Луизиана успешно проверены многоступенчатые испарители нефти с подводом тепла от циркулирующего жидкого теплоносителя; третья такая установка будет построена в штате Техас. Мощность каждой установки - 100000 тонн в год, но может быть доведена до 500000 тонн в год" [4].
Новым в предлагаемом способе является интенсификация процессов фазового разделения равновесного многокомпонентного углеводородного парожидкостного потока. Основное ограничение интенсивности и глубины разделения связано с низкой скоростью диффузии, преодолеваемой на практике увеличением поверхности раздела фаз: уменьшением размера частиц обрабатываемой жидкости, организацией капельно-струйного или пленочного течения, применением распылителей, насадок и т.д.
Для интенсификации разделения парожидкостной эмульсии нагретой углеводородной жидкости предлагается применение центробежной силы. Так, например, при подаче предварительно диспергированного нагревом потока парожидкостной смеси на криволинейную поверхность при скорости 10 м/с и радиусе кривизны 5 см создается искусственное поле тяжести, примерно в 200 раз превышающее земное тяготение. При этом быстрая коагуляция жидкости с резким уменьшением поверхности разделения фаз препятствует обратному поглощению углеводородных компонентов из паровой фазы. Интенсивность выделения низкокипящих углеводородов из жидкой фазы повышается тепломассообменом перегретых паров в контактном испарителе с жидкостью.
Наиболее близкой по назначению и технической сущности к предлагаемому способу являются технологические схемы малотоннажных установок для получения моторных топлив из углеводородного сырья в местах его добычи. Недостатком указанной технологии является большая номенклатура оборудования, аналогичная крупнотоннажным нефтеперерабатывающим заводам (НПЗ); оснащение установки ректификационными колоннами и огневыми трубчатыми печами в значительной мере усложняет эксплуатацию и безопасность, что усугубляется из-за низкой технологической обеспеченности малотоннажных установок, устанавливаемых на отдаленных месторождениях сырья, по сравнению с НПЗ [2].
Принципиальная технологическая схема предлагаемого способа представлена на прилагаемом рисунке и включает следующие аппараты: емкость сбора прямогонного бензина (1); дизельного (2) и котельно-печного топлив (3); циркуляционные насосы рабочей жидкости вакуумной установки (4) и отбензиненного остатка (5); контактный испаритель (6); барботажный распределитель перегретых отдувочных паров (7); распылитель жидкой фазы (8); паровые подогреватели жидкой (9) и паровой (10) фаз; рекуперативный подогреватель сырья (11); циклонный фазовый разделитель (12); эжектор вакуумной установки (13); регуляторы уровня (14; 15) и температуры (16; 17); обратный клапан (18); воздушный конденсатор (19); каплеотбойник (20); пароструйный смеситель (21); змеевик-подогреватель сырья (22); горячий отсек (23) емкости тяжелого остатка (3) (котельно-печное топливо).
На схеме обозначены потоки:
сырье I; прямогонный бензин II; дизельное топливо III; котельно-печное топливо IV.
Сырье I проходит через рекуперативный конденсатор (1), паров бензиновой фракции II, далее подогревается в змеевике (22) горячего отсека емкости сбора котельно-печного топлива (3) и паровом подогревателе (9) и поступает в циклонный фазовый разделитель (12), регулятором (15) в контактном испарителе выдерживается температура конца кипения отбираемой бензиновой фракции, поступает в циклонный фазовый разделитель (12). Жидкая фаза под давлением паров однократного испарения через распределитель (8) подается в паровое пространство контактного испарителя (6) в виде мелких капель и струй, где благодаря тепломассообмену с перегретыми парами отбираемой фракции жидкость обедняется низкокипящими углеводородами и обогащается высококипящими компонентами. Для поддержания избыточного давления, исключения проскока паровой фазы с жидкостью в фазовом разделителе регулятором (14) поддерживается постоянный уровень. Паровая фаза V из разделителя (12) перегревается в паровом теплообменнике 10 на 30-50oС выше температуры жидкой фазы в контактном испарителе, поступает в объем жидкой фазы через барботажный распределитель отдувочных паров (7) для отпарки из жидкости низкокипящих компонентов, отбираемых в качестве целевого продукта, и конденсации в жидкой фазе высококипящих компонентов из перегретых паров, контактирующих с ней.
По данным института углеводородного сырья (ВНИИУС, А.С. 1074891), подача на стадии сепарации нефти несконденсированной фазы в количестве 2% массовых на нефть позволила повысить выход бензина на 25-30%.
Пар бензиновой фракции выводится из контактного испарителя через кожухотрубчатый конденсатор (11), в котором охлаждается исходным сырьем, и поступает в емкость сбора бензиновой фракции (1). Бензиновая фракция отгоняется в период заполнения сырьем испарителя (6). При получении в процессе перегонки двух продуктов отбираются паровая фаза и остаток, например перегонка газового конденсата или получение бензиновой фракции и отбензиненных тяжелых остаточных моторных топлив из нефти, технологический процесс осуществляется непрерывно. При перегонке нефти с отбором бензиновой фракции, дизельного и котельно-печного топлива отбор дизельной фракции производят, прекратив закачку сырья, после заполнения испарителя. Отбензиненный остаток циркулируют насосом (5) через паровой подогреватель (9), фазовый разделитель (12) с раздельной подачей паровой и жидкой фаз в контактный испаритель. Перегретые пары из парового подогревателя (10) (дизельное топливо) направляют для отпарки остатка (котельно-печного топлива). При достижении температуры остатка 250-300oС включают циркуляционный насос (4) вакуумсодержащей установки и продолжают отпарку остатка при остаточном давлении в испарителе 0,1-0,2 кг/см2. Пары дизельной фракции конденсируются в воздушном конденсаторе (19) и через трубную обвязку эжектора (13) сливаются в емкость (2).
При достижении нормируемой температуры вспышки остатка отключают насос (5), прекращают циркуляцию остатка через разделительный отсек из контактного отсека испарителя (6), подаваемого струйным насосом (21), активным потоком которого является перегретая паровая фаза из теплообменника (10), являющаяся одновременно отпаривающим агентом, обеспечивающим глубокий отбор дизельной фракции из остатка, производят слив котельно-печного топлива в горячий отсек (23) емкости (3), в котором размещен змеевик-теплообменик (22) для подогрева сырья в период его закачки в испаритель (6). В целях сокращения выбросов углеводородов в окружающую среду рабочей жидкостью в эжекторной вакуумосоздающей установке служит отбираемая топливная фракция.
Известно, что четкость разделения углеводородного сырья на топливные фракции однократным испарением значительно ниже разделения в ректификационных колоннах. В целях повышения четкости разделения на топливные фракции интенсивное разделение парофазного потока осуществляется в центробежном поле с дополнительным трехкратным отпариванием жидкой фазы перегретыми парами отбираемой легкой фракции: при контакте жидкой фазы в виде мелких капель и струй с перегретыми парами в паровом объеме контактного испарителя, отдувке жидкой фазы барботирующими через ее объем мелкими струями перегретых паров и при отпарке жидкости в струйном смесителе (21) обеспечивается достаточный запас качества по фракционному составу получаемых моторных топлив.
Эффективность указанных технологических приемов подтверждается результатами, полученными институтами ВНИИУС и ВНИИГАЗ, а также работающими в США установками постепенного испарения, обеспечивающими получение дизельного и газотурбинного топлива для привода насосов насосных станций магистральных газопроводов.
Основные отличия установки:
- в технологической схеме отсутствует ректификационная колонна и огневая трубчатая печь. Указанная особенность аппаратурного оформления процесса переработки углеводородного сырья в моторное топливо значительно упрощает эксплуатацию установки. Максимальный эффект достигается при применении данной установки на удаленных месторождениях и насосных станциях, магистральных нефтепроводах, удаленных от НПЗ;
- отсутствие прямого огневого нагрева сырья и низкое рабочее избыточное давление в аппаратах практически исключают аварийные ситуации с возгоранием сырья, разрушением оборудования и уменьшают экологический риск выброса в окружающую среду;
- низкая себестоимость переработки.
Для получения топливных фракций используется унифицированный модуль номинальной производительностью по сырью - 100000 тонн в год. Минимальная и максимальная производительность, соответственно, - 30000 и 120000 тонн в год.
Источники информации
1. Г.А. Ластовкин и др. "Справочник нефтепереработчика". 1986 г.
2. С.П. Павлова и др. "Промысловая переработка газовых конденсатов и получение моторных топлив. Обзорная серия. Подготовка и переработка газового конденсата". Выпуск 3. ВНИИЭГАЗпром. 1982 г.
3. А. В. Фролов и др. Схема получения дизельного топлива на Сургутском ЗСК. Газовая промышленность, 1. 1987 г.
4. Экспресс-информация "Перегонка нефти и нефтехимия", 1980 г. 14. ВНИИ-ЭНЕФТЕХИМ.
Изобретение относится к переработке нефти на малотоннажных модульных установках для получения моторных топлив из местных ограниченных сырьевых ресурсов. Разделение нефти на фракции осуществляют с использованием циклонного фазового разделителя и контактного испарителя. При этом получают либо бензиновую фракцию и отбензиненный тяжелый остаток в непрерывном режиме, либо отбирают бензиновую фракцию, дизельное топливо и котельно-печное топливо при периодическом режиме работы установки. Сырье нагревают в рекуперативных теплообменниках и разделяют в фазоразделителе на жидкую и паровую фазы. Жидкая фаза в дисперсном состоянии противотоком поступает в паровое пространство контактного испарителя. Паровая фаза дополнительно подогревается на 30-50oС выше температуры жидкой фазы и подается в качестве отпаривающего агента через барботажный распределитель в объем жидкой фазы, находящейся в нижней зоне контактного испарителя. Бензиновую фракцию получают при конденсации паровой фазы из испарителя. Для получения дизельного топлива отбензиненный остаток циркулируют через паровой подогреватель и фазовый разделитель, в результате чего перегретые пары дизельного топлива в контактном испарителе при 250-300oС используются для отпарки котельно-печного топлива (остатка обработки сырья). Технический результат - упрощение аппаратурного оформления при разделении нефти с улучшением экономических и экологических показателей. 2 з.п.ф-лы, 1 ил.
ПАВЛОВА С.П | |||
и др | |||
Подготовка и переработка газового конденсата | |||
Обзорная серия ВНИИЭГАЗ-пром | |||
Устройство для видения на расстоянии | 1915 |
|
SU1982A1 |
Способ выделения бензиновой фракции из нефти | 1983 |
|
SU1074891A1 |
СПОСОБ ФРАКЦИОНИРОВАНИЯ НЕФТИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2100403C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕНЗИНА | 1999 |
|
RU2165957C2 |
Авторы
Даты
2003-03-10—Публикация
2001-04-10—Подача