Изобретение относится к удобрениям пролонгированного действия и может быть использовано в сельском хозяйстве для любых культур в течение 3-5 лет при однократном внесении в почву, исключающем необходимость внесения других компонентов.
Разрабатываемые в настоящее время стеклянные удобрения не выветриваются, не проникают в грунтовые воды и обеспечивают питание растений в течение 3-5 лет. Однако они не включают азотных соединений, без которых процесс фотосинтеза, а следовательно роста растений практически невозможен.
Таким образом, задача введения азотного удобрения в пролонгированные комплексные стеклянные удобрения весьма актуальна, поскольку делает эти удобрения универсальными.
Известно комплексное гранулированное удобрение, патент США 3954942, С 01 В, опубликованный в 1976 г., включающее все необходимые растению компоненты, заключенное в полимерную оболочку.
Недостатком известного удобрения является его короткий срок действия: не более 1 года. Это объясняется тем, что при первичном местном разрушении полимерной оболочки растворение ее содержимого идет лишь немногим медленнее, чем обычного удобрения без оболочки.
Известно удобрение по а. с. 1119999, МКИ С 05 В 13/06, опубликовано 23.10.84 г. в БИ 39, содержащее в остеклованном виде соединения фосфора, калия, микроэлементов. Это удобрение работает в течение 3-5 лет, однако его применение требует ежегодного внесения в почву азотных удобрений, что ведет к существенным эксплуатационным затратам.
Известен принимаемый за прототип "Способ получения таблетированного медленно действующего удобрения" по а. с. СССР 1527228, МКИ С 05 С 9/02, опубликованное 07.12.89 г. в БОИ 45. Согласно этому способу в азотно-фосфорно-калийном удобрении используется исходная смесь неорганических фосфатов и мочевино-формальдегидной смолы (МФС).
Ни в первом, ни во втором из известных авторских свидетельств не ставится и не решается вопрос о последовательном и сбалансированном выходе элементов питания растений в почвенные растворы, а также о влиянии процессов дезинтеграции и таблетирования на антагонизм исходных компонентов удобрения в то же время известно, что карбомид при нагревании в кислых рН<5 растворах или основных рН>8 растворах с одной стороны может гидролизоваться до аммиака и углекислого газа, а с другой стороны при полимеризации не только образовывать МФС, но и давать биурет, который крайне токсичен для растений даже при содержании 0.25 мас.%.
Задачей настоящего изобретения является обеспечение универсальности известного стеклянного удобрения за счет обеспечения его пролонгированного действия, а также разработка способа его получения.
Задача настоящего изобретения решается таким образом, что в комплексном стеклянном удобрении пролонгированного действия, содержащем фосфорно-калийное удобрение, мочевино-формальдегидную смолу (МФС) и микроэлементы, в качестве фосфорно-калийного удобрения и микроэлементов используют фосфатное стеклообразное удобрение "Агровитаква-AVA" (далее "AVA") со следующим составом в мас.%:
P2O5 - 49-55
CaO - 10-14
MgO - 5-8
Fe2O3 - 0,2-0,5
MnO - 0,1
CuO - 0,02
В2О3 - 0,2-1,5
СоО - 0,05
SiO2 - 1-3
МоО3 - 0,005
К2О - 15-19
а в качестве мочевино-формальдегидной смолы используют полностью растворимую линейно-циклическую полиметилен мочевину при массовом соотношении компонентов:
Фосфатное стеклообразное удобрение (AVA) - 75-90%
Линейно-циклическая полиметиленмочевина - 10-25%
Способ получения стеклянного удобрения пролонгированного действия включает синтез мочевино-формальдегидной смолы (МФС), отверждение и выделение твердой МФС, и последующее смешивание МФС с фосфорно-калийными удобрениями и микроэлементами, и отличается тем, что в качестве фосфорно-калийных удобрений и микроэлементов содержит фосфатное стеклообразное удобрение (AVA) со следующим составом в мас.%:
P2O5 - 49-55
CaO - 10-14
MgO - 5-8
Fе2О3 - 0,2-0,5
MnO - 0,1
CuO - 0,02
В2О3 - 0,2-1,5
СоО - 0,05
SiO2 - 1-3
МоО3 - 0,005
K2O - 15-19
а синтез МФС производят при температуре 45oС в течение 2 часов в нейтральной или слабокислой среде с постоянным контролем уровня рН (рН 5-7), в полученный жидкий конденсат линейно-циклической полиметиленмочевины вводится фосфатное стеклообразное удобрение (AVA) в виде порошка при массовом соотношении компонентов:
Фосфатное стеклообразное удобрение (AVA) - 75-90%
Линейно-циклическая полиметиленмочевина - 10-25%
затем полученный гетерогенный композит гранулируют путем нагревания до 50oС.
На основе мочевино-формальдегидной смолы (МФС) производят карбамидоформальдегидное удобрение (КФУ) в соответствии с ТУ 113-03-03-0-85, которое представляет смесь продуктов поликонденсации типа полиметилол и полиметиленмочевины линейного, линейно-циклического и пространственного строения, содержание азота в котором удерживают на среднем уровне - 23-33 мас.%.
При обезвоживании МФС переходит из смолообразного в стекловидное состояние. Процесс обезвоживания можно проводить нагреванием смолы, например до 50oС. Производство МФС осуществляется из мочевины, формалина, спирта и аммиака, причем рН можно менять в широких пределах от 4,5 до 8,5. От уровня рН зависит растворимость МФС после остеклования. Чем больше рН, тем медленнее растворение.
Таким образом можно уравнять скорость растворения стеклянного удобрения и стеклообразной МФС. Для составления универсального композитного удобрения, измельченные до порошка стеклообразные компоненты перемешивались со смолообразной МФС при массовом соотношении компонентов:
Фосфатное стеклообразное удобрение (AVA) - 75-90%
Линейно-циклическая полиметиленмочевина - 10-25%
а затем гранулировались при температуре 50oС. В результате получались остеклованные гранулы, содержащие до 15% азота и годные к внесению в почву.
Кинетика растворения таких удобрений аналогична удобрениям по прототипу, но предлагаемые удобрения могут работать в течение 3-5 лет при температуре от 8 до 22oС. При этом исключается отдельное внесение в почву азотных удобрений.
Положительный эффект при использовании изобретения достигается:
1. За счет большей скорости растворения МФС по сравнению с AVA почвенные растворы последовательно обогащаются компонентами питания растений с переменной концентрацией азота, калия, фосфора во времени. Это позволяет говорить о синергизме агрохимического действия удобрения, так как на начальной стадии выход азота в почвенные растворы в 2-3 раза превосходит выход калия, фосфора, бора и микроэлементов, а примерно через месяц, в расчете на температуру 20oС, и постоянную влажность концентрации выходящих компонентов в единицу времени, выравниваются.
2. Общая скорость растворения чечевичнообразных гранул диаметром 5-10 мм оказывается существенно более низкой, чем чистой МФС, за счет высокой адгезии на поверхности AVA. Это обеспечивает пролонгированное действие композита при сбалансрованном питании растений.
3. Отсутствие химического взаимодействия между AVA и МФС позволяет говорить о гетерогенном композите, в отличие от дезинтегрированных смесей, противопоставляемых заявителям.
4. Выход в единицу времени минеральных компонентов в почвенные растворы возрастает с увеличением удельной поверхности S/м (S - общая поверхность частиц порошка стеклообразного удобрения, а м - его полная масса). Сбалансированный выход азота и элементов минерального питания растений достигается для конкретного стеклообразного удобрения - AVA при соотношении AVA - 75-90%, МФС - 10-25 мас.% (частицы порошка - AVA размером 60-180 мкм, размеры гранул композита 5-10 мм). В общем случае эти величины являются переменными.
Пример реализации изобретения.
Для примера был взят образец КФУ ТУ 113-03-33-0-85, представляющий собой гранулы диаметром 3-5 мм белого цвета. Проведенные приближенные оценки растворимости КФУ показали, что смола полидисперсный продукт. Кинетика растворения образцов имеет нелинейный характер. Анализ результатов показывает, что в начальной стадии растворения следует рассматривать 2 процесса: сначала набухание полимера, затем растворение полимера. Во второй стадии кинетическая кривая выходит на насыщение.
КФУ растворяется при 18oС до 60% за 6 суток.
Из уровня техники известно, что изменяя условия реакции поликонденсации, можно добиться получения растворимой МФС.
В примере используется метод синтеза полностью растворимой МФС и одновременно (без промежуточного отверждения смолы) получения композита из МФС и стеклянного порошка AVA.
Протекание реакций поликонденсации мочевины с формальдегидом зависит от рН среды. В нейтральной и слабощелочной среде рН 6-8 на первой стадии реакции образуются моно- и диметилолмочевины.
При взаимодействии их молекул между собой получаются полиметиленмочевины линейного строения. Это растворимый продукт, неспособный самопроизвольно переходить в неплавкое и нерастворимое состояние. Диметилольные производные мочевины, вступая во взаимодействие между собой, образуют растворимую линейно-циклическую полиметиленмочевину. При нагревании мочевины с формальдегидом в нейтральной или слабокислой среде (рН 5-7) происходит образование смолообразных гидрофильных продуктов, после обезвоживания переходящих в плавкое стеклообразное состояние.
В сильнокислой среде (рН 3) мочевина реагирует с формальдегидом с образованием моно- и диметиленмочевины и дает трудно растворимые в воде, неплавкие и аморфные продукты.
Нами синтез МФС производился из мочевины, формалина с добавлением спирта и аммиака, чтобы рН составляло 7,6-7,8. Синтез смолы проводится при постоянном контроле рН. Смесь нагревалась в течение 2 часов на водяной бане, при этом рН изменялось до 5,0-4,6. Конденсат представлял собой жидкий сироп. Обычно далее проводится операция отверждения. После чего выделяется твердая смола. В наших экспериментах жидкий конденсат непосредственно использовался для получения композита.
В конденсат вводилось стекло AVA-7 в виде порошка. Получены 3 серии образцов, в которых содержание стекла относилось как 1:2:3.
Смеси конденсат+стекло подвергались отверждению при разных температурных режимах:
1 серия (меньшее количество стекла): 9,5 часов при 45oС и 4 суток при 20oС,
2 серия: 6,5 часов при 45oС и 2 суток при 20oС,
3 серия: 1,5 часов при 45oС и 20 часов при 20oС.
Дольше отверждались образцы с меньшим содержанием стекла.
Готовые образцы представляли собой таблетки диаметром 8-10 мм. При использовании описанной методики нам удалось получить образцы, в которых смола не теряла растворимость в процессе отверждения. Таблица (см. в конце текста описания).
Таким образом, получены композиты из МФС и стеклянного порошка AVA, которые могут использоваться в качестве удобрения пролонгированного действия.
название | год | авторы | номер документа |
---|---|---|---|
ГРАНУЛИРОВАННОЕ КОМПЛЕКСНОЕ УДОБРЕНИЕ | 1999 |
|
RU2163585C1 |
СТЕКЛЯННЫЕ УДОБРЕНИЯ ПРОЛОНГИРОВАННОГО ДЕЙСТВИЯ | 1999 |
|
RU2163587C1 |
СПОСОБ ИММОБИЛИЗАЦИИ ФИЗИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ | 1999 |
|
RU2189961C2 |
СПОСОБ ПОЛУЧЕНИЯ БИОМАССЫ КЛЕТОК РАСТЕНИЙ | 2005 |
|
RU2308484C2 |
СПОСОБ ПРОИЗВОДСТВА ФОСФАТНЫХ СТЕКОЛ | 2001 |
|
RU2191755C1 |
БИОПРЕПАРАТ БИАВА ДЛЯ РЕКУЛЬТИВАЦИИ ПОЧВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2003 |
|
RU2248255C1 |
БИОПРЕПАРАТ "АВАЛОН" ДЛЯ ОЧИСТКИ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2000 |
|
RU2181701C2 |
СПОСОБ ОБОГАЩЕНИЯ ПОЧВЫ ПРИ ВОЗДЕЛЫВАНИИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР | 2007 |
|
RU2357392C2 |
НЕФТЕСОРБЕНТ | 2021 |
|
RU2777158C1 |
Гранулированное комплексное удобрение на основе фосфатно-калийного стекла | 1982 |
|
SU1087498A1 |
Изобретение относится к удобрениям пролонгированного действия и может быть использовано в сельском хозяйстве для любых культур в течение 3-5 лет при однократном внесении в почву. Удобрение включает в качестве фосфорно-калийного удобрения и микроэлементов фосфатное стеклообразное удобрение, содержащее Р2О5, СаО, MgO, Fe2О3, MnO, CuO, B2О3, CoO, SiO2, MoO3, К2O определенного состава, а в качестве мочевино-формальдегидной смолы используют полностью растворимую линейно-циклическую полиметиленмочевину при массовом соотношении компонентов: фосфатное удобрение 75-90%, мочевина 10-25%. Способ получения удобрения включает синтез мочевино-формальдегидной смолы (МФС), который проводят при 45oС в течение 2 ч в нейтральной или слабокислой среде с рН от 5 до 7, в полученный жидкий конденсат мочевины вводится фосфорно-калийное удобрение в виде порошка, затем полученный гетерогенный композит гранулируют. Удобрение обеспечивает сбалансированное питание растений, является универсальным за счет пролонгированного действия. 2 с.п. ф-лы, 1 табл.
Р2О5 - 49-55
СаО - 10-14
MgO - 5-8
Fe2О3 - 0,2-0,5
МnО - 0,1
CuO - 0,02
В2О3 - 0,2-1,5
СоО - 0,05
SiO2 - 1-3
МоО3 - 0,005
К2О - 5-19
а в качестве мочевино-формальдегидной смолы используют полностью растворимую линейно-циклическую полиметиленмочевину при массовом соотношении компонентов:
Фосфатное стеклообразное удобрение - 75-90%
Линейно-циклическая полиметиленмочевина - 10-25%
2. Способ получения комплексного стеклянного удобрения пролонгированного действия, включающий синтез мочевино-формальдегидной смолы (МФС), и последующее смешивание МФС с фосфорно-калийными удобрениями и микроэлементами, отличающийся тем, что в качестве фосфорно-калийных удобрений и микроэлементов используют фосфатное стеклообразное удобрение со следующим составом, мас.%:
Р2О5 - 49-55
СаО - 10-14
MgO - 5-8
Fe2О3 - 0,2-0,5
MnO - 0,1
CuO - 0,02
B2О3 - 0,2-1,5
CoO - 0,05
SiO2 - 1-3
MoO3 - 0,005
K2O - 15-19
синтез МФС производят при 45oС в течение 2 ч в нейтральной или слабокислой среде с постоянным контролем уровня pH в диапазоне от 5 до 7, в полученный жидкий конденсат линейно-циклической полиметиленмочевины вводится фосфатное стеклообразное удобрение в виде порошка в массовом соотношении компонентов:
Фосфатное стеклообразное удобрение - 75-90%
Линейно-циклическая полиметиленмочевина - 10-25%,
затем полученный гетерогенный композит гранулируют путем нагревания до 50oС и гранулируют.
Способ получения таблетированного медленнодействующего удобрения | 1987 |
|
SU1527228A1 |
Стеклообразное гранулированное удобрение пролонгированного действия на основе фосфатного стекла | 1987 |
|
SU1742276A1 |
СПОСОБ ПОЛУЧЕНИЯ УДОБРЕНИЯ | 1996 |
|
RU2144012C1 |
СТЕКЛЯННЫЕ УДОБРЕНИЯ ПРОЛОНГИРОВАННОГО ДЕЙСТВИЯ | 1999 |
|
RU2163587C1 |
US 3892552 А, 01.07.1975 | |||
ТАЙМЕР ХОЛОДИЛЬНЫХ УСТРОЙСТВ НА ОДНОПОЛУПЕРИОДНЫХ ВЫПРЯМИТЕЛЯХ | 2003 |
|
RU2255274C1 |
Огнетушитель | 0 |
|
SU91A1 |
Бесколесный шариковый ход для железнодорожных вагонов | 1917 |
|
SU97A1 |
Авторы
Даты
2003-06-20—Публикация
2001-12-21—Подача