СПОСОБ ВОЗВЕДЕНИЯ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ МОСТОВЫХ ОПОР-СТЕНОК Российский патент 2003 года по МПК E01D19/14 E02D29/02 

Описание патента на изобретение RU2208082C2

Изобретение относится к области мостостроения и может быть использовано при возведении монолитных железобетонных мостовых опор-стенок, протяженных подпорных стенок, монолитных железобетонных тоннелей и водопропускных труб, во всех случаях, когда предполагается существенный перерыв в бетонировании фундамента или лотка с одной стороны и стен и свода тоннеля или трубы с другой.

Известен способ бетонирования сооружений большой длины с применением расчленения их по длине с сохранением непрерывной продольной рабочей арматуры и применением поперечных швов, которые герметизируют снаружи клеевыми, битумными материалами или бетоном (раствором) с добавками, повышающими водонепроницаемость (В.П. Каменцев, Л.Б. Мойжес. Современные методы бетонных работ при строительстве мостов. М., Изд-во "Транспорт", 1972 г., стр. 126-127).

Недостаток этого способа бетонирования протяженного сооружения в том, что он требует расчленения последнего по всему поперечному сечению и подходит скорее для железобетонных плит перекрытий и аэродромных или дорожных покрытий. При использовании его для бетонирования протяженного сооружения в виде мостовой опоры-стенки возникает противоречие: при их сооружении неизбежно возникает технологический перерыв бетонирования на контакте нижнего и верхнего ярусов. Перерыв приводит к появлению разности температур между фундаментом и стенкой в момент твердения бетона в стенке. Причем более высокая температура формируется в верхнем ярусе-стенке. После выравнивания температур бетона в ярусах в верхнем возникают растягивающие напряжения, нередко приводящие к вертикальным сквозным трещинам, которые с определенным шагом повторяются по всей длине протяженного сооружения. Для борьбы с этими трещинами применяют температурно-усадочные швы, наибольшее расстояние между которыми для монолитных сплошных конструкций зданий, находящихся на открытом воздухе, ограничивают 25 метрами, для железобетонных конструкций тоннелей толщиной 20-60 см наибольшее расстояние между швами рекомендуется в диапазоне 20-40 м. Однако и это мероприятие, как показала практика, оказывается недостаточным: расстояние между сквозными вертикальными трещинами, как правило, на порядок меньше расстояния между температурно-усадочными швами.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ возведения массивных бетонных опор, включающий операции подготовки основания под опору, монтажа оснастки и арматурного каркаса для бетонирования фундамента и тела опоры, бетонирование фундамента и тела опоры с последующим выдерживанием конструкции при заданном температурно-влажностном режиме до достижения ею требуемых эксплуатационных параметров и разборки оснастки. Бетонирование фундамента осуществляют в два этапа, причем на первом этапе бетонируют основную часть фундамента, оставляя в центре верхней части его незабетонированную нишу, затем монтируют оснастку и арматурный каркас для бетонирования тела опоры, бетонируют нишу, а по прошествии времени после окончания бетонирования ниши бетонируют тело опоры. (Патент РФ 2165491, бюл. 11, 2001 г).

Недостаток этого способа состоит в том, что применение ниши при бетонировании протяженных монолитных железобетонных опор-стенок не позволяет уменьшить разницу температур в момент твердения бетона стенок между смежными по высоте участками опоры (фундаментом и стенкой), а значит и не позволяет повысить качество и долговечность возводимых конструкций.

Предлагаемым изобретением решается задача повышения трещиностойкости монолитных железобетонных конструкций путем обеспечения возможности свободных перемещений при возникновении температурно-усадочных деформаций стенки в период ее твердения и остывания в случае большого перерыва между бетонированием фундамента (ростверка) и стенки.

Сущность предлагаемого изобретения состоит в том, что в способе возведения монолитных протяженных опор-стенок, включающем операции подготовки основания под опору-стенку, монтажа оснастки и арматурного каркаса для бетонирования фундамента, бетонирования фундамента, монтажа оснастки и арматурного каркаса для бетонирования стенки, бетонирования стенки, последующего выдерживания конструкции при заданном температурно-влажностном режиме до достижения ею требуемых эксплуатационных параметров и разборки оснастки, операция подготовки основания включает устройство тиксотропного подстилающего слоя, бетонирование фундамента ведут отдельными блоками по длине конструкции с устройством температурно-усадочных швов между смежными блоками, при этом длина каждого бетонируемого блока должна удовлетворять двум неравенствам L≤15 м и L≤kh, где h - высота возводимой стенки, м; k=0,8...1,5 - поправочный коэффициент, зависящий от местных условий; стенку же бетонируют сразу на всю ее длину и высоту.

Сущность изобретения поясняется чертежами,
где на фиг. 1 схематически изображен фасад возводимой монолитной железобетонной опоры-стенки на естественном основании;
на фиг.2 - фасад опоры-стенки на свайном основании;
на фиг.3 - распределение растягивающих температурных напряжений в протяженной стенке на едином фундаменте;
на фиг.4 - то же, на фундаменте, расчлененном на блоки.

Способ возведения монолитных железобетонных, преимущественно мостовых опор-стенок заключается в следующем.

Вначале ведут подготовку основания под возводимую конструкцию опоры-стенки 1. Подготовка основания включает устройство тиксотропного подстилающего слоя 2, представляющего собой укладку материала, уменьшающего коэффициент трения бетона по основанию. Например, это могут быть два слоя полиэтиленовой пленки, рубероида, пергамина со смазкой между ними из глинобитумной пасты, асфальтовой мастики, отработанного масла и т.п. В случае свайного основания принимают меры, обеспечивающие продольную податливость в грунте верхней части свай. Фундамент или ростверк 3 бетонируют частями (блоками), соблюдая условие L≤kh, где L - длина бетонируемой части (блока) м; h - высота стенки, м; k=0,8...1,5 поправочный коэффициент, зависящий от местных условий; зазоры или поперечные швы 4 между частями (блоками) заполняют демпфирующим материалом, например листовым материалом "мостопласт", резиноподобным герметиком, резинобитумной смесью и т.п., а для ростверка делают проверку расчетом: термоупругая жесткость поперечного сечения стенки должна превышать продольную жесткость одной части расчлененного ростверка.

Чтобы не возникали сквозные вертикальные трещины при сооружении монолитной железобетонной опоры-стенки разность температур бетона фундамента в момент твердения бетона стенки не должна превышать 10-15oС. Иначе после выравнивания температур по высоте в нижней части стенки возникнут недопустимые растягивающие напряжения. На практике сохранить такую небольшую разницу температур бетона не удается. В процессе твердения бетона в стенке происходит его разогрев за счет экзотермии цемента до 40-50oС. Если фундамент забетонирован недавно, то он тоже разогрет, и проблем нет. Однако по производственным причинам часто не удается сразу вслед за фундаментом забетонировать стенку. В лучшем случае перерыв равен времени, необходимом на монтаж арматурного каркаса и др. оснастки для бетонирования стенки, в худшем разрыв в сроках достигает нескольких месяцев. За это время фундамент успевает остыть.

Таким образом, техническое противоречие, которое разрешает данное изобретение, заключается в том, что, с одной стороны, разогрев стенки до 40-50oС неизбежен за счет экзотермии цемента, а с другой, удержать в реальных условиях производства на том же уровне температуру фундамента не удается, поскольку длительные перерывы в бетонировании неизбежны. Разогрев же фундамента перед бетонированием стенки весьма затруднен прежде всего по экономическим соображениям.

Решение технического противоречия заключается в том, что в предлагаемом способе расчлененный фундамент "позволяет" остывающей стенке свободно сокращаться в продольном направлении, а возникающие температурные напряжения в стенке не превышают предельно допустимых. Пояснение сказанного дается сравнением полей температурных напряжений в протяженной стенке на едином фундаменте (фиг.3) и на расчлененном (фиг.4). В результате разности температур Δt в момент замыкания стенки и фундамента после выравнивания температур по высоте стенка должна сократиться по длине на величину ε = -αΔt, где α- коэффициент линейного температурного расширения бетона. Однако стенка соединена с фундаментом и потому они работают совместно. Это приведет к образованию в поперечном сечении продольных упругих температурных напряжений σ = εE, где Е - модуль упругости бетона. На фиг.3 разная величина этих напряжений показана разным цветом по фасаду стенки. В нижней части стенки напряжения имеют достаточно большую величину и убывают только у краев стенки. В практике мостостроения такие напряжения приводят к образованию в стенках вертикальных сквозных трещин, которые с практически постоянным шагом повторяются по длине стенки, начинаясь примерно на расстоянии h/2 от ее начала и заканчиваясь на таком же расстоянии от ее конца. В предлагаемом способе остывающая стенка, сокращаясь по длине, увлекает за собой отдельные блоки фундамента, сжимая демпфирующее заполнение в швах между блоками. Тиксотропный подстилающий слой обеспечивает свободу продольного перемещения блоков фундамента. В результате растягивающие напряжения резко сокращаются (фиг.4) и при соблюдении неравенств L≤kh и L≤15 м не достигают значений, которые приводят к трещинообразованию.

Эффективность предложенного способа возведения монолитных железобетонных мостовых опор-стенок определяется тем, что резко снижается опасность трещинообразования в стенках при большом перерыве бетонирования фундамента и стенки.

Похожие патенты RU2208082C2

название год авторы номер документа
СПОСОБ БЕТОНИРОВАНИЯ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ, ПРОТЯЖЕННЫХ ПО ПЛОЩАДИ 2001
  • Антонов Е.А.
  • Пассек В.В.
  • Цернант А.А.
  • Хабибулин К.И.
  • Сычев А.П.
  • Цимеринов А.И.
  • Заковенко В.В.
  • Величко В.П.
  • Дмитриев А.И.
  • Мордухович И.М.
RU2208083C2
СПОСОБ ВОЗВЕДЕНИЯ ПЕРЕКРЫТИЙ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 2001
  • Антонов Е.А.
  • Пассек В.В.
  • Цернант А.А.
  • Хабибулин К.И.
  • Сычев А.П.
  • Цимеринов А.И.
  • Заковенко В.В.
  • Величко В.П.
  • Дмитриев А.И.
  • Мордухович И.М.
RU2206679C2
СПОСОБ БЕТОНИРОВАНИЯ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ, ПРОТЯЖЕННЫХ ПО ПЛОЩАДИ 2001
  • Пассек В.В.
  • Антонов Е.А.
  • Цернант А.А.
  • Цимеринов А.И.
  • Заковенко В.В.
  • Величко В.П.
RU2211892C2
СПОСОБ ВОЗВЕДЕНИЯ МОСТОВЫХ БЕТОННЫХ ОПОР 2000
  • Пассек В.В.
  • Антонов Е.А.
  • Величко В.П.
  • Заковенко В.В.
RU2165491C1
ОПАЛУБОЧНЫЙ ЩИТ 1998
  • Пассек В.В.
  • Антонов Е.А.
  • Заковенко В.В.
  • Величко В.П.
RU2149243C1
СПОСОБ ВОЗВЕДЕНИЯ МОСТА ЧЕРЕЗ ВОДНУЮ ПРЕГРАДУ 2004
  • Костылев В.В.
  • Сур Е.Г.
RU2237123C1
СПОСОБ БЕТОНИРОВАНИЯ МОНОЛИТНЫХ КОНСТРУКЦИЙ 2001
  • Соловьянчик А.Р.
  • Шифрин С.А.
  • Коротин В.Н.
  • Вейцман С.Г.
RU2208093C2
АРОЧНЫЙ ЗАСЫПНОЙ МОСТ 1997
  • Дробышевский Б.А.
  • Кручинкин А.В.
RU2107770C1
ТЕМПЕРАТУРНО-УСАДОЧНЫЙ ШОВ 2001
  • Антонов Е.А.
  • Пассек В.В.
  • Цернант А.А.
  • Цимеринов А.И.
  • Заковенко В.В.
  • Величко В.П.
RU2202673C2
ОСНАСТКА ДЛЯ СООРУЖЕНИЯ ВЫСОКИХ РОСТВЕРКОВ МОСТОВЫХ ОПОР 2003
  • Павлюков Ю.А.
  • Данковцев А.Ф.
  • Чепурнов К.Г.
  • Ликверман А.И.
  • Величко В.П.
  • Пассек В.В.
RU2250948C1

Иллюстрации к изобретению RU 2 208 082 C2

Реферат патента 2003 года СПОСОБ ВОЗВЕДЕНИЯ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ МОСТОВЫХ ОПОР-СТЕНОК

Изобретение относится к области мостостроения и может быть использовано при возведении различных конструкций во всех случаях, когда предполагается существенный перерыв в бетонировании фундамента или лотка с одной стороны и стен свода тоннеля или трубы с другой. Способ включает операции подготовки основания под опору-стенку, монтажа оснастки и арматурного каркаса для бетонирования фундамента и стенки. Новым является то, что операция подготовки основания включает устройство тиксотропного подстилающего слоя, бетонирование фундамента ведут отдельными блоками по длине конструкции с устройством температурно-усадочных швов между смежными блоками, при этом длину каждого бетонируемого блока определяют из двух условий L≤15 м и L≤kh, где h - высота возводимой стенки, м; k=0,8...1,5 - поправочный коэффициент, зависящий от местных условий, стенку же бетонируют сразу на всю ее длину и высоту. Технический результат изобретения состоит в повышении трещиностойкости монолитных железобетонных конструкций. 4 ил.

Формула изобретения RU 2 208 082 C2

Способ возведения монолитных железобетонных преимущественно мостовых опор-стенок, включающий операции подготовки основания под опору-стенку, монтажа оснастки и арматурного каркаса для бетонирования фундамента, монтажа оснастки и арматурного каркаса для бетонирования стенки, последующее выдерживание конструкции при заданном температурно-влажностном режиме до достижения ею требуемых эксплуатационных параметров и разборки оснастки, отличающийся тем, что операция подготовки основания включает устройство тиксотропного подстилающего слоя, бетонирование фундамента ведут отдельными блоками по длине конструкции с устройством температурно-усадочных швов между смежными блоками, при этом длину каждого бетонируемого блока определяют из двух условий L≤15 м и L≤kh, где h - высота возводимой стенки, м; k=0,8...1,5 - поправочный коэффициент, зависящий от местных условий, стенку же бетонируют сразу на всю ее длину и высоту.

Документы, цитированные в отчете о поиске Патент 2003 года RU2208082C2

СПОСОБ ВОЗВЕДЕНИЯ МОСТОВЫХ БЕТОННЫХ ОПОР 2000
  • Пассек В.В.
  • Антонов Е.А.
  • Величко В.П.
  • Заковенко В.В.
RU2165491C1
Способ возведения столбчатой мос-ТОВОй ОпОРы 1979
  • Рязанов Юрий Степанович
  • Рязанова Ида Абрамовна
SU804757A1
Способ сооружения мостовой опоры столбчатого типа 1984
  • Кондуров Валентин Сергеевич
  • Черевацкий Борис Пинхусович
  • Фролов Юрий Антонович
SU1320322A1
Рекомендации по повышению трещиностойкости борных и монолитных бетонных и железобетонных опор мостов
- М., ВНИИ транспортного строительства, 1969
КАМЕНЦЕВ В.П., МОЙЖЕС Л.Б
Современные методы бетонных работ при строительстве мостов
- М.: Транспорт, 1972, с.126 и 127
ЕВГРАФОВ Г.К
Мосты на дорогах
- М.: Трансжелдориздат, 1955, с.317-327
КОЛОКОНОВ Н.М., ВЕЙНБЛАТ Б.М
Строительство мостов
- М.: Транспорт, 1975, с.104-107.

RU 2 208 082 C2

Авторы

Величко В.П.

Пассек В.В.

Антонов Е.А.

Цернант А.А.

Цимеринов А.И.

Заковенко В.В.

Даты

2003-07-10Публикация

2001-09-13Подача