СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНОГО ГУМИНОВОГО ПРОДУКТА Российский патент 2003 года по МПК C10F7/00 

Описание патента на изобретение RU2209230C2

Изобретение относится к технологии получения органоминерального продукта из сырья природного происхождения и может быть использовано при переработке торфа, сапропеля и бурого угля.

Известен способ получения органоминерального продукта, в котором в качестве одного из перерабатываемых компонентов используется бурый уголь, а в качестве добавки - готовое минеральное удобрение карбамид (Россия, патент 2044720, 27.09.95).

Известен способ получения органоминерального продукта из смеси сапропеля, торфа и других органических добавок с последующим гранулированием и сушкой гранул в кипящем слое (Россия, патент 2041866, 20.08.95).

Известен способ получения органоминерального гуминового продукта из торфа, обработанного гидроксидом или силикатом калия (Россия, патент 2021236, 15.10.94) в количестве 5 - 9 мас.% на сухое вещество торфа.

Получаемые продукты изготавливаются путем простого смешивания и их можно использовать лишь в качестве удобрений.

Кроме того, известные способы экономически дорогостоящи, а качественные показатели получаемых продуктов невысоки.

Известен способ приготовления органоминерального продукта (водоугольной суспензии) путем мокрого измельчения бурого угля с водой при нагреве гидросмеси до 200 -300oС токами высокой частоты под давлением 1,5 - 10 МПа и введением в гидросмесь поверхностно-активных добавок (Россия, патент 2054455, 20.02.96 ). При этом мокрое измельчение бурого угля проводят до фракции 1 - 3 мм, а после барометрической обработки гидросмеси, вторичное измельчение в пароструйной мельнице до фракции 200 -300 мкм.

Недостатком этого способа является повышенные энергетические затраты, сложность аппаратурного оборудования, большие расходы поверхностно-активных и диспергирующих добавок.

Кроме того, низкий энергетический потенциал (высокая зольность, недостаточная концентрация твердой фазы), высокая стоимость вследствие значительных затрат на его приготовление, сужают область применения полученного продукта.

Наиболее близким по технической сущности является способ получения органоминерального гуминового продукта, включающий измельчение гуматосодержащего вещества (торф, бурый уголь, сапропель или другие органические вещества), обработку его щелочным агентом (водный раствор КОН и/или NaОН, и/или NH4OH, и/или соды) с последующим выделением жидкой суспендированной или кашеобразной среды, обработку полученной фракции азотсодержащими солями и выпариванием избыточной влаги (Россия, патент 2007376, 15.02.94).

Недостатком данного способа является то, что измельченное исходное сырье смешивают с химическим реагентом, поэтому процесс гидролиза лигноцеллюлозной составляющей протекает не в полном объеме, а гуминовая составляющая выделяется лишь частично.

Полученный продукт можно использовать только по указанному назначению. Кроме того, к недостаткам следует отнести многостадийность процесса и слишком высокие энергетические затраты, связанные с выделением гуминовой фракции процессом выпаривания конечного продукта.

Задачей настоящего изобретения является создание технологии получения полифункционального органоминерального продукта широкого диапазона применения за счет доразложения органической составляющей в процессе механохимического гидролиза исходного материала и образования гидролизованного коллоидно-дисперсного гуминового продукта.

Поставленная задача достигается тем, что в способе получения органоминерального гуминового продукта, включающего обработку исходного сырья природного происхождения, обогащенного гуминовыми кислотами, химическим реагентом, согласно изобретению органоминеральное сырье подвергают механохимическому гидролизу путем измельчения до крупности не более 5 мкм в водной, водно-щелочной или водно-кислотной, или водно-аммиачной среде при общем гидромодуле 1:3 и скорости вращения ротора не менее 3000 об/мин до получения коллоидного раствора, характеризующего пенообразованием, и падения тока нагрузки на электродвигателе до 20-30% с последующей гомогенизацией полученного продукта не менее 24 ч.

Механохимический гидролиз осуществляется в реакторе, рабочий орган которого выполнен из титана, при температуре не ниже 90oС.

Для получения комплексонов металл - органика в реактор дополнительно вводятся водорастворимые соли переходных металлов в количестве до 1% на 1 т исходного сырья.

Установлено, что образование комплексонов в системе гуминовые соединения - ионы металлов осуществляется через формирование отдельных координационных узлов на макромолекуле гуминовой кислоты. Число координационных узлов в макромолекулярных комплексах гуминовых кислот с ионами металлов возрастает в ряду: Рb2+>Ni2+>Zn2+>> Со2+> Cd2+>Мn2+>Сa2+>Mg2+. Исследование макроструктуры полученного продукта на электронном микроскопе показывает, что раствор представляет собой глобулярные макроструктуры в воде, имеющие размеры от 300 до 700 нм. В центре глобул видны электронно-плотные субъеденицы, которые и представляют собой ионы металлов.

Для получения органоминерального продукта, используемого в качестве высокосортного топлива, в процесс обработки в качестве катализаторов дополнительно вводятся оксиды железа и алюминия в суммарном количестве до 1% на 1 т исходного сырья, а также отработанное масло в количестве до 30% на тонну исходного сырья.

Кроме того, в процессе измельчения исходного сырья в реактор дополнительно вводят цеолит - алюмосиликат каркасного типа в количестве до 10% на 1 т исходного сырья, при этом получаемый продукт можно использовать в качестве полировальных паст.

Цеолит представляет собой природную многокомпонентную алюмосиликатную систему с кристаллической структурой каркасного типа. Обладая хорошей сорбционной способностью, цеолит при его добавлении в гидрогумат аккумулирует последний, обмениваясь с ним ионами, что в условиях локальной обработки повышает качество обрабатываемой поверхности, нивелируя шероховатости и другие дефекты.

После обработки поверхности имели гладкую, блестящую, зеркальную поверхность: шероховатость поверхности составляла 0,002 мкм (при известных от 0,32 - 0,025 мкм), класс чистки поверхности после обработки - 12 (в известных не выше 8 - 12).

Исходный материал, например торф, бурый уголь, сапропель, содержащий лигноцеллюлозную и гуминовую составляющую, непрерывным потоком подают сверху в вертикальный цилиндрический диспергатор роторного типа, корпус которого выполнен из нержавеющей стали, а рабочий орган - из титана.

Изнутри реактор футерован кислотоупорными неметаллическими материалами, а снаружи - теплоизолирован. Реактор снабжен оросительными и фильтрующими устройствами.

Исходный материал раздрабливается до размера частиц, приемлемого для гидролиза, и контактирует с потоком крайне разбавленной сильной неорганической кислоты (например, серной, соляной) в таком количестве, чтобы обеспечить концентрацию 0,5-1,0%, аммиачной водой 25%-нoй концентрации или слабощелочным раствором, что позволяет одновременно провести реакцию целлюлозной составляющей, растворение лигнина и выделение гуминовой составляющей с получением жидкой фазы в форме гидролизного экстракта, содержащего продукты реакции целлюлозной части, раствор лигнина и гуминовых кислот и твердую фазу, содержащую нерастворенный и не прореагировавший материал.

Переработка материала при температуре не ниже 90oС в реакторе, ротор которого выполнен из титана, позволяет осуществлять механохимический гидролиз при скорости не менее 3000 об/мин и получить продукт дисперсностью не более 5 мкм, что активирует перерабатываемый материал на уровне кристаллической решетки, а наличие гидроксильных и карбоксильных групп ведет к образованию коллоидных ассоциатов - комплексонов гуминовых кислот, удерживанию указанной твердой фазы так, чтобы она не откладывалась на дне.

Измельчение со скоростью не менее 3000 об/мин обеспечивает получение материала стабильного состава с удельной поверхностью на 1 г (3-6)•103 см2. Дальнейшая гомогенизация и дозирование осуществляются в отдельном виброаппарате-отстойнике в течение не менее 24 ч, когда полностью завершаются процессы образования высокомолекулярных ассоциатов.

Сведения, подтверждающие возможность осуществления.

Берется одна часть торфа и три части воды, добавляется 1% Na ОН и с помощью суперкавитационного насоса полученная смесь циркулирует в замкнутом контуре реактора, подвергаясь измельчению. В процессе обработки температура суспензии в течение 15 мин достигает 90oС и более, при этом процесс ведут до получения коллоидной системы, характеризующейся активным пенообразованием. Полученный продукт в целях гомогенизации системы выдерживают в танке-отстойнике не менее 24 ч.

Исходный кусковой бурый уголь размером частиц до 4 мм поступает вместе с водой на доизмельчение и гидролиз. При высокоскоростном ударном разрушении до размера частиц менее 5 мкм уголь активируется, так как измельчение сопровождается выделением высокой энергии и повышением температуры внутри процесса. Эти условия способствуют выделению гуминовой составляющей и образованию дисперсно-коллоидной системы с содержанием твердой фазы 70-80%. Для повышения энергетического потенциала в смесь добавляют оксиды железа или алюминия в суммарном количестве до 1% на 1 т исходного сырья.

Дальнейшая гомогенизация в танке-отстойнике позволяет получить продукт, который может использоваться в качестве водоугольного топлива, с улучшенными физико-реологическими и теплофизическими свойствами, пригодный для длительного хранения и транспортировки.

Аналогичный по свойствам продукт можно получить, добавляя в процессе механохимического гидролиза до 30% на тонну исходного сырья отработанного масла, при этом теплотворная способность топлива повышается с 1070 до 28000 кДж/кг. Таблица содержит данные по науглероживанию торфа и перевод его в класс высокосортных топлив.

Получаемый гидролизованный коллоидно-дисперсный базовый продукт имеет желеобразную консистенцию, темно-коричневый цвет и может служить многофункциональной добавкой к технологическим смазкам, улучшающей противоизносные, антифрикционные, противозадирные, антиокислительные и антикоррозионные свойства, составной частью буровых растворов, высокосортным топливом, основой комплексных удобрений и стимуляторов роста растений.

В качестве органоминерального удобрения полученный продукт обладает высокой биологической активностью за счет содержания гуминовых веществ, определяющих плодородие почвы.

При этом энергоемкость процесса снижается до 0,3 кВт/кг продукции, выход продукта увеличивается до 90%, а себестоимость его составляет - 7 руб/кг.

Похожие патенты RU2209230C2

название год авторы номер документа
ТЕХНОЛОГИЧЕСКАЯ СМАЗКА 2001
  • Телицын И.И.
  • Барабанщиков А.В.
  • Бородин Г.А.
  • Барабанщикова Е.А.
RU2190009C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНЫХ УДОБРЕНИЙ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Петраков Александр Дмитриевич
  • Радченко Сергей Михайлович
  • Яковлев Олег Павлович
  • Галочкин Александр Иванович
  • Ефанов Максим Викторович
  • Шотт Петр Рейнгольдович
  • Высоцкая Вера Владимировна
RU2296731C2
СПОСОБ КАВИТАЦИОННОЙ ОБРАБОТКИ МАТЕРИАЛОВ 2008
  • Телицин Иван Игоревич
RU2385184C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОДИСПЕРСНОГО ОРГАНИЧЕСКОГО УДОБРЕНИЯ ИЗ ТОРФА 2013
  • Антипов Михаил Владимирович
RU2600700C1
Способ переработки торфа для получения комплекса гуминовых веществ (КГВ) 2021
  • Санжаров Вадим Анатольевич
RU2773658C1
Способ производства органоминеральных, комплексных удобрений и технологическая линия для его осуществления 2019
  • Тетерин Владимир Сергеевич
  • Панфенов Николай Сергеевич
  • Гайбарян Михаил Арутюнович
  • Гапеева Наталья Николаевна
  • Митрофанов Сергей Владимирович
  • Мельничук Дмитрий Сергеевич
  • Новиков Николай Николаевич
  • Сидоркин Владимир Иванович
  • Сорокин Николай Тимофеевич
  • Белых Сергей Анемподистович
RU2727193C1
Способ получения гранулированного гуминового детоксиканта 2020
  • Кошелев Алексей Васильевич
  • Атаманова Ольга Викторовна
  • Тихомирова Елена Ивановна
  • Алексашин Антон Вячеславович
RU2762366C1
СПОСОБ ПОЛУЧЕНИЯ ГУМИНОВЫХ ВЕЩЕСТВ ИЗ ТОРФА 2009
  • Хохлов Антон Львович
RU2416591C1
СПОСОБ ПОЛУЧЕНИЯ ГУМИНОВЫХ СТИМУЛЯТОРОВ РОСТА 2014
  • Яковлев Алексей Алексеевич
  • Никольский Виктор Михайлович
  • Толкачева Людмила Николаевна
RU2577891C2
СПОСОБ ПОЛУЧЕНИЯ БИОСТИМУЛЯТОРА РОСТА ИЗ САПРОПЕЛЯ И/ИЛИ ТОРФА 1994
  • Билибин Е.Б.
  • Герасенков А.А.
  • Антонов Э.Р.
  • Алпатов А.И.
  • Киселев Н.К.
RU2049084C1

Иллюстрации к изобретению RU 2 209 230 C2

Реферат патента 2003 года СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНОГО ГУМИНОВОГО ПРОДУКТА

Изобретение относится к технологии получения органоминерального продукта из сырья природного происхождения и может быть использовано при переработке торфа, сапропеля и бурого угля. Способ получения органоминерального гуминового продукта включает обработку исходного сырья природного происхождения, обогащенного гуминовыми кислотами, химическим реагентом. Органоминеральное сырье подвергают механохимическому гидролизу путем измельчения до крупности не более 5 мкм в водной, водно-щелочной, или водно-кислотной, или водно-аммиачной среде при общем гидромодуле 1:3 и скорости вращения ротора не менее 3000 об/мин до получения коллоидного раствора, характеризующегося пенообразованием, и падения тока нагрузки на электродвигателе до 20-30% с последующей гомогенизацией полученного продукта не менее 24 ч. Технический результат: получение полифункционального органоминерального продукта широкого диапазона применения. 7 з.п.ф-лы, 1 табл.

Формула изобретения RU 2 209 230 C2

1. Способ получения органоминерального гуминового продукта, включающий обработку исходного сырья природного происхождения, обогащенного гуминовыми кислотами, химическим реагентом, отличающийся тем, что органоминеральное сырье подвергают механохимическому гидролизу путем измельчения до крупности не более 5 мкм в водной, водно-щелочной, или водно-кислотной, или водно-аммиачной среде при общем гидромодуле 1:3 и скорости вращения ротора не менее 3000 об/мин до получения коллоидного раствора, характеризующегося пенообразованием, и падения тока нагрузки на электродвигателе до 20-30%, с последующей гомогенизацией полученного продукта не менее 24 ч. 2. Способ по п.1, отличающийся тем, что процесс ведут при температуре не ниже 90oС. 3. Способ по п.1, отличающийся тем, что механохимический гидролиз проводят в присутствии катализатора. 4. Способ по п.3, отличающийся тем, что в качестве катализатора дополнительно вводят оксиды железа и алюминия в суммарном количестве до 1% на 1 т исходного сырья. 5. Способ по п.1, отличающийся тем, что при механохимическом гидролизе дополнительно вводят отработанное масло в количестве до 30% на 1 т исходного сырья. 6. Способ по п.1, отличающийся тем, что для получения комплексонов металл-органика при механохимическом гидролизе дополнительно вводят водорастворимые соли переходных металлов в суммарном количестве до 1% на 1 т исходного сырья. 7. Способ по п.1, отличающийся тем, что механохимический гидролиз сырья осуществляют в реакторе, в который дополнительно вводят цеолит - алюмосиликат каркасного типа в количестве до 10% на 1 т исходного сырья. 8. Способ по п.1, отличающийся тем, что механохимический гидролиз осуществляют в реакторе, рабочий орган которого выполнен из титана.

Документы, цитированные в отчете о поиске Патент 2003 года RU2209230C2

СПОСОБ ПОЛУЧЕНИЯ СТИМУЛЯТОРА РОСТА РАСТЕНИЙ "ГУМИКС" И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 1993
  • Бабаев Сергей Николаевич
RU2007376C1
СПОСОБ ПОЛУЧЕНИЯ СВЯЗУЮЩЕГО 1991
  • Вязовченко П.А.
  • Малиновский Е.К.
  • Кваша В.Б.
  • Чижов В.В.
  • Хрусталев Е.Н.
  • Синютин А.Е.
RU2041185C1
RU 94008319 A1, 27.11.1995
ГРАНУЛИРОВАННОЕ УДОБРЕНИЕ НА ОСНОВЕ ТОРФА 1994
  • Перфильева В.Д.
  • Алексеева Т.П.
  • Криницын Г.Г.
RU2121489C1
ТЕПЛОЗВУКОИЗОЛЯЦИОННАЯ ПАНЕЛЬ 1992
  • Масленников Б.И.
  • Шульман Ю.А.
RU2034965C1
RU 95111820 A1, 27.06.1997
СПОСОБ ПЕРЕРАБОТКИ ТОРФА И ДРУГИХ УГЛЕОБРАЗОВАТЕЛЕЙ В ПАСТООБРАЗНОЕ СОСТОЯНИЕ 1993
  • Космачевский Борис Петрович
  • Бакатин Юрий Павлович
RU2077548C1

RU 2 209 230 C2

Авторы

Телицин И.И.

Барабанщиков А.В.

Бородин Г.А.

Барабанщикова Е.А.

Даты

2003-07-27Публикация

2001-09-12Подача