Изобретение относится к области электротехники, а именно к топливным элементам (ТЭ) с протонопроводящими полимерными мембранами и др. химическим источникам тока, в которых используются мембранные или матричные электролитные структуры.
Известны конструкции батарей ТЭ с протонопроводящими полимерными мембранами, содержащие пакет последовательно собранных мембран, электродов и биполярных охлаждающих камер, установленных в резиновые рамки, по контуру которых выполнены коллекторообразующие отверстия и каналы для подачи и отвода рабочих реагентов и охлаждающей жидкости. Стенки биполярных охлаждающих камер имеют гофры, образующие газовые каналы в пространствах между электродом и стенками камер (см. Лидоренко Н.С., Мучник Г.Ф. Электрохимические генераторы, стр. 318, 320, 329, М.: Энергоиздат, 1982 г.). Герметизация кромки мембраны производится путем сжатия пакета между двумя фланцами. При этом одновременно герметизируются коллекторы, формируются газовые камеры и обеспечивается электрический контакт между мембраной, электродами и стенками биполярных охлаждающих камер.
По аналогичной конструктивной схеме фирма "Siemens" в 90-х годах разработала 40 кВт энергоустановку для подводных аппаратов.
Данная конструкция имеет следующие недостатки. При сборке пакета из множества элементов в процессе сжатия, в особенности увлажненных мембран, из-за отсутствия четкой фиксации мембран относительно резиновых рамок может иметь место частичное выскальзывание кромки мембраны из зоны герметизации. Это приводит к потере внутренней герметичности. Кроме того, сборка усложняется тем обстоятельством, что одновременно необходимо обеспечить внутреннюю и внешнюю герметичность и заданный токосъем между мембраной, электродами и биполярной охлаждающей камерой.
Известны такие батареи топливных элементов с полимерным электролитом, в которых герметизация мембранно-электродного блока производится между двумя плоскими прокладками, которые одновременно герметизируют смежные охлаждающие камеры или пластины, а по периметру снабжены коллекторообразующими отверстиями (см. патент США 5419980, кл. Н 01 М 8/10, опубл. 30.05.1995 г.).
Аналогичное техническое решение предлагается в патенте Японии 4-11985, кл. Н 01 М 8/02, опубл. 04.11.1992 г. Узел герметизации по данному изобретению включает трехслойную прокладку, сформированную из неспеченного фторопласта с различными модулями упругости. При этом величина модуля упругости средней прокладки выше, чем модули упругости крайних прокладок.
Последние изобретения приняты в качестве прототипа.
Плоские прокладки не обеспечивают надежной герметизации мембран и биполярных охлаждающих камер или пластин. Затрудняется сборка пакетов элементов, т.к. нет конструктивной взаимной фиксации собираемых в пакет деталей.
Более надежная герметизация при одновременной взаимной фиксации составляющих пакет деталей производится путем сопряжения выступов, выполненных на прокладках - сепараторах, расположенных между смежными охлаждающими пластинами, в которых имеются соответствующие им углубления (см. патент США 5521018, кл. Н 01 М 8/4, опубл. 28.05.1996 г.). Однако в данном техническом решении не решен вопрос надежной фиксации и герметизации мембраны по отношению к герметизирующим прокладкам.
Целью настоящего изобретения является повышение надежности герметизации мембранно-электродного блока, а также узла герметизации смежных биполярных охлаждающих камер или пластин, упрощение процесса сборки батареи топливных элементов за счет фиксации мембранно-электродного блока по отношению к герметизирующим прокладкам и последних относительно биполярных охлаждающих камер или пластин за счет введения специальных конструктивных элементов в конструкции прокладок, мембраны и камер согласно изобретению.
Указанная цель достигается тем, что узел герметизации с протонопроводящими полимерными мембранами, содержащий мембранно-электродный блок, герметизирующие прокладки из эластичного материала, по периметру которых выполнены коллекторообразующие отверстия, и биполярные охлаждающие камеры с плоскими стенками и с аналогичными коллекторообразующими отверстиями, выполнен следующим образом. Согласно предлагаемому изобретению, мембрана мембранно-электродного блока перфорирована по контуру герметизации. Герметизирующие прокладки из эластичного материала, расположенные между биполярными охлаждающими камерами, выполнены из двух полупрокладок, снабженных по контуру герметизации мембран чередующимися и соответствующими перфорации мембраны отверстиями и пуклями, которые при сборке полупрокладок и мембранно-электродного блока между ними образуют соединение путем сопряжения отверстий одной из полупрокладок с пуклями др. полупрокладки и наоборот. При этом мембрана мембранно-электродного блока предварительно устанавливается на пукли одной из полупрокладок, причем высота пуклей каждой из полупрокладок не превышает толщину др. полупрокладки в зоне герметизации. Герметизация смежных биполярных охлаждающих камер обеспечивается за счет выступов, выполненных по внешнему и внутреннему контурам герметизации полупрокладок, а также выступов вокруг коллекторообразующих отверстий полупрокладок.
Поставленная цель достигается также тем, что соединение полупрокладок между собой и с мембраной производится при помощи ультразвуковой сварки, причем мембранно-электродный блок предварительно обезвоживается.
Данная цель также достигается тем, что соединение полупрокладок между собой, с биполярными охлаждающими камерами и с мембраной производится через полимеризующиеся или незатвердевающие герметики.
Предпочтительно в зону герметизации мембраны между полупрокладками вводить электроды на размере до 2 мм по контуру герметизации мембранно-электродного блока.
Целесообразно, чтобы биполярная охлаждающая камера была снабжена по контуру внешней и внутренней герметизацией, а также вокруг коллекторообразующих отверстий канавками, которые по своему профилю соответствуют выступам в герметизирующих полупрокладках.
Предпочтительно, чтобы полупрокладки содержали выступы только линейного размера в плане, при этом герметизация между коллекторообразующими отверстиями также производилась линейными выступами в плане, расположенными ортогонально выступам внешнего и внутреннего контуров герметизации полупрокладок.
Предлагаемые технические решения обеспечивают надежную фиксацию и взаимную ориентацию мембранно-электродного блока, герметизирующих полупрокладок и биполярныых охлаждающих камер или пластин при сборке батарей топливных элементов, а также надежную герметизацию сопрягаемых поверхностей. Упрощается сам процесс сборки батареи.
Ультразвуковая сварка или введение герметиков в зоны герметизации повышает надежность соединений по герметичности.
Введение кромок электродов в зону герметизации полупрокладок на глубину до 2 мм гарантирует отсутствие непосредственного контакта открытой мембраны с рабочими газами, что исключает возможность пересушки мембраны и уменьшает диффузию рабочих компонентов в смежную газовую полость.
Выполнение выступов в прокладках только линейного характера в плане позволяет снизить стоимость оснастки.
Проведенный анализ уровня техники показал, что заявленная совокупность признаков, изложенных в формуле, неизвестна. Это позволяет сделать вывод, что заявленное устройство соответствует критерию "новизна".
Для проверки соответствия заявляемого изобретения критерию "изобретательский уровень" проведен поиск технических решений с целью выявления признаков, совпадающих с отличительными от прототипа заявляемого изобретения.
Установлено, что заявляемое изобретение не следует для специалиста в данной области явным образом из известного уровня техники. Следовательно, заявляемое изобретение соответствует критерию "изобретательский уровень".
Сущность изобретения поясняется чертежом и описанием.
На фиг. 1 изображен фрагмент батареи топливных элементов в плане (со стороны полупрокладки), на фиг.2 приведено сечение по оси коллектора подачи реагентов.
Мембранно-электродный блок 1, состоящий из мембраны 2 и электродов 3, 4, установлен между двумя полупрокладками 5, 6, которые, в свою очередь, обжимаются биполярными охлаждающими камерами или пластинами 7, 8. Мембрана 2 по контуру перфорирована, а полупрокладки снабжены чередующимися отверстиями 9 и пуклями 10. По внешнему контуру прокладки сформированы выступы 11, а по внутреннему контуру - выступы 12. Для герметизации коллекторообразующих отверстий 13 полупрокладки снабжены линейными выступами 14, расположенными ортогонально к выступам 11 и 12. Для фиксации полупрокладок с биполярными охлаждающими камерами или пластинами 7, 8 при герметизации в последних выполнены соответствующие выступам в прокладках линейные канавки 15, 16. Рабочие реагенты поступают в газовые пространства 17, 18 через каналы 19, 20. Герметизация узла обеспечивается за счет обжатия выступов 11, 12, 14 в полупрокладках, а также за счет нанесения полимеризующихся или жидких герметиков на взаимно сопрягаемые поверхности деталей 1, 5, 6, 7, 8. Возможна ультразвуковая сварка деталей 2, 5, 6 до сборки батареи. Отверстия 21 предназначены для установки стяжных шпилек.
Устройство собирается следующим образом. Мембранно-электродный блок 1 с перфорированной по контуру мембраной 2 надевается на пукли 10 одной из полупрокладок, например 6, затем устанавливается вторая полупрокладка 5. При этом пукли 10 одной из полупрокладок входят в отверстия 9 другой полупрокладки и наоборот. Для более надежной герметизации поверхности сорягаемых деталей в зоне герметизации предварительно, до сборки, покрываются герметиком. Возможен также вариант ультразвуковой сварки полупрокладок между собой и с мембраной. После этого производится установка собранного узла между двумя смежными биполярными холодильными камерами 7, 8, набирается последовательный набор топливных элементов в батарею и пакет сжимается между концевыми фланцами и фиксируется шпильками, устанавливаемыми в отверстия 21.
Батарея генерирует ток после подачи рабочих компонентов через коллекторы 22 и каналы 19, 20 в газовые полости 17, 18. Мембранно-электродный блок обеспечивает реакцию холодного горения, т.е. непосредственного преобразования химической энергии топлива и окислителя в электричество. Отвод тепла производится пластинами 7, 8.
Заявленный узел герметизации был реализован на макетном образце батареи ТЭ с активной поверхностью 10•10 см2 с вариантом герметизации на основе жидкого герметика - раствора полиизобутилена в бензине. Герметизирующие прокладки изготавливались из фторкаучука СКФ-26. При сборке батареи ТЭ мембранно-электродные блоки предварительно обезвоживались. Биполярные охлаждающие камеры представляли собой цельнопаянные конструкции с плоскими стенками. Внутренний сепаратор изготавливался из объемного просечного гофра с высотой 1,2 мм и шагом 2,5 мм. По периметру камеры устанавливалась металлическая рамка с коллекторообразующими отверстиями и каналами для подачи и отвода Н2, О2, охлаждающей жидкости и реакционной воды. Токовые коллекторы-сепараторы в газовых камерах ТЭ представляли собой трехслойные сетки - плетеная сетка 0,16 мм, просечная сетка с ромбовидной ячейкой 3 мм и просечная сетка с ромбовидной ячейкой 5 мм (из листа толщиной 0,2 мм), расположенная ячейками ортогонально сетке с ячейкой 3 мм. Усилие сжатия ТЭ между концевыми фланцами - 50 кгс/см2. Рабочие давления Н2 и O2 2-2,5 кгс/см2, охлаждающей жидкости - 1,0 кгс/см2. Испытательное давление на внутреннюю герметичность (Н2 - O2) - 1,5 кгс/см2, внешнюю герметичность - 3,0 кгс/см2.
После сборки и проверки внутренней и внешней герметичности батарея ТЭ заполнялась дистиллированной водой (полости Н2 и О2) и при комнатной температуре выдерживалась в течение 24 час. Перед функциональными испытаниями дистиллят сливался и полости Н2 и O2 продувались в течение ~2 мин инертным газом.
Макетная батарея ТЭ проработала в течение 500 час при плотностях тока до 350 мА/см2 и напряжении на ТЭ не менее 0,7...0,8 В.
На основании изложенного можно сделать вывод, что заявляемое изобретение может быть использовано на практике с достижением указанного результата и, следовательно, соответствует критерию "промышленная применимость".
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СБОРКИ МЕМБРАННО-ЭЛЕКТРОДНОГО БЛОКА | 2001 |
|
RU2198452C1 |
ТОПЛИВНЫЙ ЭЛЕМЕНТ И БАТАРЕЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ | 2006 |
|
RU2328060C1 |
ТОПЛИВНЫЙ ЭЛЕМЕНТ И БАТАРЕЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ | 2012 |
|
RU2504868C2 |
БАТАРЕЯ КОНДЕНСАТОРОВ (ВАРИАНТЫ) | 2000 |
|
RU2170469C1 |
ТОПЛИВНЫЙ ЭЛЕМЕНТ И БАТАРЕЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ | 2012 |
|
RU2496186C1 |
КОНДЕНСАТОР С ДВОЙНЫМ ЭЛЕКТРИЧЕСКИМ СЛОЕМ | 2000 |
|
RU2170467C1 |
ТОПЛИВНЫЙ ЭЛЕМЕНТ, ИСПОЛЬЗУЮЩИЙ ИНТЕГРАЛЬНУЮ ТЕХНОЛОГИЮ ПЛАСТИН ДЛЯ РАСПРЕДЕЛЕНИЯ ЖИДКОСТИ | 1995 |
|
RU2174728C2 |
БИПОЛЯРНАЯ ПЛАСТИНА ТОПЛИВНОГО ЭЛЕМЕНТА КРУГЛОЙ ФОРМЫ | 2012 |
|
RU2516245C1 |
БАТАРЕЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ | 2007 |
|
RU2355072C1 |
БИПОЛЯРНАЯ ПЛАСТИНА ДЛЯ СТЕКОВ ТОПЛИВНЫХ ЭЛЕМЕНТОВ | 2019 |
|
RU2723294C1 |
Изобретение относится к электротехнике, в частности к узлам герметизации топливных элементов с протонопроводящим полимерным электролитом. Согласно изобретению узел герметизации содержит перфорированную по контуру протонопроводящую полимерную мембрану, установленную между двумя полупрокладками из эластичного материала. По внутреннему контуру полупрокладок в зоне герметизации мембраны выполнены чередующиеся отверстия и пукли. Мембрана устанавливается на пукли одной из полупрокладок, после чего вторая полупрокладка сопрягается с первой. При этом пукли одной из полупрокладок входят в отверстия другой и наоборот. Для повышения надежности герметизации предложена ультразвуковая сварка мембраны с полупрокладками или применение полимеризующихся или незатвердевающих герметиков. Узел герметизации полупрокладок с биполярными охлаждающими камерами основан на выступах, выполненных в полупрокладках по их внешнему и внутреннему контурам, а также на поверхностях, расположенных между коллекторообразующими отверстиями. Изобретение позволяет повысить надежность герметизации. 4 з.п.ф-лы, 2 ил.
US 5419980 A, 30.05.1995 | |||
СПОСОБ ПЕРВОНАЧАЛЬНОГО ЗАПУСКА ТОПЛИВНОГО ЭЛЕМЕНТА С РАСПЛАВЛЕННЫМ КАРБОНАТНЫМ ЭЛЕКТРОЛИТОМ | 1995 |
|
RU2093929C1 |
US 5521018 A, 28.05.1996. |
Авторы
Даты
2003-11-20—Публикация
2001-03-12—Подача