СПОСОБ ИСПЫТАНИЙ СКРЕПЛЁННЫХ ЗАРЯДОВ РАКЕТНЫХ ДВИГАТЕЛЕЙ ТВЁРДОГО ТОПЛИВА Российский патент 2003 года по МПК G01N33/22 F42B35/00 

Описание патента на изобретение RU2217746C1

Изобретение относится к области ракетной техники, в частности к РДТТ со скрепленными зарядами, и может найти применение в системах различного класса.

Срок сохраняемости является одним из основных требований технического задания на разработку зарядов. Как правило, срок сохраняемости зарядов значительно превышает сроки отработки зарядов, поэтому для подтверждения сохраняемости зарядов в течении всего периода эксплуатации используются различные методы ускоренных испытаний. Обычно это метод ускоренных климатических испытаний (УКИ), основанный на достижении предельного изменения физико-механических характеристик (ФМХ) топлива за счет физико-химического старения в форсированных условиях. Например, методика прогнозирования гарантийных сроков хранения авиационных РДТТ, описанная в журнале Э.И. Новости машиностроения, 1985 г., 9, серия "Наука и техника", предусматривает проведение работ в три этапа. При этом кроме форсированного старения методика предусматривает разрушение заряда. Недостатками данного метода является невоспроизводимость реальных условий эксплуатации заряда, длительный период испытаний и большие экономические затраты.

Наиболее близким к заявляемому изобретению является метод прогнозирования накопленных повреждений в заряде РДТТ для определения гарантийных сроков хранения, принятый авторами за прототип. Он включает ускоренное испытание по старению твердого топлива в заряде в условиях повышенных температур и позволяет прогнозировать сохраняемость заряда только из одного типа топлива (РЖ АРД, 1999 г., 11.34.99). Кроме того, напряженно-деформированное состояние (НДС) заряда в условиях испытаний по данному способу и в естественных климатических условиях эксплуатации не одинаково. Различие заключается в том, что старение заряда производиться при повышенных температурах и в этих условиях НДС заряда характеризуется сжатием, а в естественных условиях - растяжением. При этом уровень напряжений, возникающих в заряде в естественных условиях, значительно превышает уровень напряжений в условиях испытаний по данному способу.

При старении заряда, производимом при повышенных температурах, в нем могут происходить физико-химические процессы, не свойственные процессам, происходящим при его эксплуатации. В естественных условиях в топливе заряда преобладающими являются процессы структурирования, в процессе старения при повышенных температурах в конечном итоге преобладающими становятся процессы деструкции топлива, что приводит к разрушению зарядов в процессе их старения.

Проведенными авторами исследованиями установлена температурно-временная граница полной деструкции топлива (фиг.1). На графике представлены режимы УКИ зарядов в координатах температура - время старения. Определялись эти режимы по энергии активации для процесса физико-химического старения топлива, характеризуемого структурированием. Но на ряду с процессами структурирования в зарядах шли и процессы деструкции, которые в конечном итоге приводили к разрушению указанных на фиг.1 зарядах. Из данного графика следует, что процессы деструкции в топливе перестают быть преобладающими при температурах ниже 50oС. Время старения при температуре 50oС, необходимое для подтверждения срока сохраняемости, значительно возрастает и составляет 2-3 года. Это при ограниченных сроках отработки зарядов практически невозможно осуществить.

Технической задачей предлагаемого изобретения является устранение перечисленных недостатков данного способа и в первую очередь увеличение достоверности результатов испытаний, проводимых в подтверждение сроков сохраняемости.

Технический результат достигается за счет того, что при испытаниях скрепленных зарядов ракетных двигателей твердого топлива их термостатируют при максимальных отрицательных и положительных температурах эксплуатации зарядов и после этого проверяют работоспособность огневыми стендовыми испытаниями. При этом перед огневыми стендовыми испытаниями на заряд воздействуют форсированными температурными нагрузками, значения которых определяют по следующему соотношению:

где TД - температура термостатирования заряда;
TР - равновесная температура заряда;
K-1ε

= ετ0 - коэффициент изменения относительных удлинений топлив от начального значения (ε0) до величины, соответствующей концу срока сохраняемости заряда (ετ);
α - коэффициент теплового расширения топлива;
безразмерный комплекс, характеризующий степень нагружения заряда;
εкр - критическое значение относительных удлинений топлива;
α2a
, α2в
- коэффициенты изменения относительных удлинений и их предельных значений соответственно.

Сущность изобретения заключается в создании таких условий испытания, которые приводят к протеканию в заряде процессов, аналогичных процессам, протекающим в нем при эксплуатации заряда в естественных условиях.

При эксплуатации зарядов в естественных условиях в них возникают различные стационарные и нестационарные напряжения, обусловленные отличием температуры заряда от его равновесной температуры, массовыми нагрузками и другими внешними воздействиями. В данных условиях основным процессом, приводящим к изменению надежности заряда во времени, является процесс накопления усталости. Поэтому основным рабочим звеном способа подтверждения сроков сохраняемости должно быть не обеспечение предельного изменения ФМХ топлива за счет его физико-химического старения при повышенных температурах, а выработка ресурса накопленной усталости. Компенсация изменений ФМХ топлива, происходящих при эксплуатации зарядов, должны осуществляться увеличением интенсивности действия силовых факторов при условии достижения той же степени накопленной усталости заряда, что и при его эксплуатации в естественных условиях.

Наглядно проиллюстрировать сущность данного способа можно с помощью графика, представленного на фиг.2,
где τxp - время хранения заряда в естественных условиях;
τи - время воздействия отрицательной температуры при выработке накопленной усталости в процессе испытаний;
τp - время работы заряда;
τcи

- время испытаний заряда по способу, основанному на старении топлива;
ωxp, ωp - усталость, накопленная зарядом за время его хранения и время работы соответственно.

Суммарная накопленная усталость скрепленного заряда РДТТ (ωэ) за время его эксплуатации складывается из двух составляющих ωxp и ωp:
ωэ = ωxpp.
На графике (фиг.2) процесс накопления напряжений при эксплуатации представлен линией ОАВ.

При подтверждении сроков сохраняемости заряда вырабатывается накопленная усталость (ωu), также включающая две составляющие ωuxp

и ωup
:
ωu = ωuxp
up

Условием эквивалентности испытаний по подтверждению срока сохраняемости является равенство:
ωэ = ωu (1)
Выработка ωxp осуществляется путем термостатирования при отрицательной температуре в течение времени (τи), обеспечивающего равенство усталости, накопленной за время испытаний (ωuxp
), накопленной усталости за весь период хранения заряда (ωxp), с учетом изменения ФМХ топлива, происходящим при хранении заряда (линия ОА' фиг.2). Если при выработке ωxp не учитывать изменения ФМХ топлива, то при испытаниях вырабатывается накопленная усталость ωuxp
эxp
, что не удовлетворяет условию эквивалентности (1) (линия ОА" фиг.2).

Выработка ωp осуществляется огневыми стендовыми испытаниями при форсированных нагрузках (линия А'В'' фиг.2). Форсирование нагрузок при ОСИ можно осуществлять либо увеличением перепада температур от равновесной температуры заряда до температуры заряда при ОСИ, либо увеличением давления в камере двигателя при ОСИ. Степень форсирования определяется степенью изменения ФМХ топлива, происходящих при хранении заряда, и требуемым уровнем вероятности безотказной работы заряда по формуле

где Хкр, Хд - критическое значение определяющей механической характеристики топлива (прочность или предельное удлинение) испытуемого заряда и действующая нагрузка (напряжение или деформация) соответственно;
αa и αв - параметры разбросов действующих нагрузок и характеристик топлива соответственно;
Kx = Xτ/Xo - коэффициент изменения механических свойств топлива от начального значения (Хо) до величины, соответствующей концу срока сохраняемости заряда (Xτ).
Если ОСИ проводить в стандартных условиях без форсирования нагрузки, то вырабатывается накопленная усталость ωup

эp
, что также не удовлетворяет условию эквивалентности (1) (линия А'В' фиг.2).

Однако испытания только на накопленную усталость не могут быть в полной мере объективной оценкой его работоспособности, так как заряд при эксплуатации определенное время подвергается воздействию положительных температур, при которых в значительной степени интенсифицируются миграционные процессы в системе "топливо - ТЗП", а также процессы газовыделения в топливе, приводящие к его деструкции. Поэтому целесообразным является наряду с испытаниями на накопленную усталость проводить испытания на попеременное воздействие положительных и отрицательных температур от максимального до минимального их значения. Данный цикл вытекает из реальных условий эксплуатации заряда. Требование о том, чтобы испытание заряда проводились в составе РДТТ вытекает из необходимости создания реальных условий, в которых находится заряд при эксплуатации.

Таким образом, предлагаемый метод подтверждения сроков сохраняемости воспроизводит реальные процессы, протекающие в заряде, и учитывает нагрузки, действующие на него в процессе эксплуатации.

Данный метод был опробован при подтверждении сроков сохраняемости целого ряда скрепленных зарядов для ракет различного назначения.

Похожие патенты RU2217746C1

название год авторы номер документа
СПОСОБ ИСПЫТАНИЙ СКРЕПЛЕННЫХ С КОРПУСОМ ЗАРЯДОВ РАКЕТНЫХ ДВИГАТЕЛЕЙ ТВЕРДОГО ТОПЛИВА 2015
  • Жарков Александр Сергеевич
  • Анисимов Игорь Иванович
  • Литвинов Андрей Владимирович
  • Чащихин Евгений Алексеевич
  • Степанов Виктор Иванович
  • Огородников Сергей Петрович
RU2607202C1
Способ испытаний скрепленных с корпусом зарядов ракетных двигателей твердого топлива 2021
  • Анисимов Игорь Иванович
  • Курбатов Андрей Валерьевич
  • Иванова Раиса Егоровна
  • Карманов Николай Михайлович
  • Степанов Виктор Иванович
RU2769614C1
СПОСОБ ИСПЫТАНИЯ ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2009
  • Никитин Василий Тихонович
  • Козьяков Алексей Васильевич
  • Молчанов Владимир Федорович
  • Куценко Геннадий Васильевич
  • Шаповалова Нина Алексеевна
  • Кислицын Алексей Анатольевич
  • Нешев Сергей Сергеевич
RU2409756C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДЫМООБРАЗОВАНИЯ РДТТ 2002
  • Козьяков А.В.
  • Молчанов В.Ф.
RU2233991C2
ЗАЩИТНО-АДГЕЗИОННЫЙ ЛАК ДЛЯ БРОНИРОВАНИЯ ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2011
  • Красильников Федор Сергеевич
  • Васильева Ирина Анатольевна
  • Серова Людмила Петровна
  • Крестовский Александр Николаевич
  • Молчанов Владимир Федорович
  • Александров Михаил Зиновьевич
  • Куценко Геннадий Васильевич
  • Охрименко Эдуард Федорович
  • Армишева Наталья Александровна
  • Пухкаева Надежда Михайловна
  • Онянова Ольга Валентиновна
RU2467044C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1998
  • Борисов О.Г.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Герасимов В.Д.
  • Денежкин Г.А.
  • Семилет В.В.
  • Куценко Г.В.
  • Некрасов В.И.
  • Шеврикуко И.Д.
  • Амарантов Г.Н.
  • Смирнов В.Д.
  • Кузьмицкий Г.Э.
  • Вронский Н.М.
  • Лисовский В.М.
  • Гринберг С.И.
  • Макаров Л.Б.
RU2125173C1
БРОНИРУЮЩИЙ СОСТАВ ДЛЯ ЗАРЯДОВ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2001
  • Степанов Е.С.
  • Куценко Г.Н.
  • Онегина С.В.
RU2208007C2
ЗАЩИТНО-АДГЕЗИОННЫЙ ПОДСЛОЙ ДЛЯ БРОНИРОВАНИЯ ВКЛАДНЫХ ЗАРЯДОВ ИЗ ТВЕРДОГО ТОПЛИВА 2005
  • Васильева Ирина Анатольевна
  • Красильников Фёдор Сергеевич
  • Летов Борис Павлович
  • Серова Людмила Петровна
  • Молчанов Владимир Фёдорович
  • Пупин Николай Афанасьевич
  • Козьяков Алексей Васильевич
  • Охрименко Эдуард Фёдорович
  • Талалаев Анатолий Петрович
  • Божья-Воля Николай Сергеевич
  • Лопатина Галина Евгеньевна
  • Макаров Леонид Борисович
  • Федченко Николай Николаевич
  • Кустов Василий Геннадьевич
RU2280054C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1998
  • Обозов Л.И.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Семилет В.В.
  • Макаровец Н.А.
  • Куценко Г.В.
  • Некрасов В.И.
  • Шеврикуко И.Д.
  • Амарантов Г.Н.
  • Смирнов В.Д.
  • Кузьмицкий Г.Э.
  • Вронский Н.М.
  • Лисовский В.М.
  • Гринберг С.И.
  • Макаров Л.Б.
  • Филатов В.Г.
RU2125175C1
Вкладыш соплового блока ракетного двигателя твердого топлива из углерод-кремнеземного композиционного материала 2020
  • Ершов Анатолий Михайлович
  • Карсаков Александр Сергеевич
  • Мышкин Сергей Николаевич
  • Подкопаев Александр Сергеевич
  • Балахонов Юрий Андреевич
RU2746081C1

Иллюстрации к изобретению RU 2 217 746 C1

Реферат патента 2003 года СПОСОБ ИСПЫТАНИЙ СКРЕПЛЁННЫХ ЗАРЯДОВ РАКЕТНЫХ ДВИГАТЕЛЕЙ ТВЁРДОГО ТОПЛИВА

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива, и может найти применение при испытаниях скрепленных зарядов ракетных в системах различных классов. Сущность способа испытаний скрепленных зарядов ракетных двигателей твердого топлива заключается в том, что заряд термостатируют при максимальных отрицательных и положительных температурах его эксплуатации и проводят последующую проверку работоспособности огневыми стендовыми испытаниями. При этом перед огневыми стендовыми испытаниями на заряд воздействуют форсированными температурными нагрузками, значения которых определяют по определенному соотношению. Техническим результатом изобретения является увеличение достоверности результатов испытаний, проводимых в подтверждение сроков сохраняемости скрепленных зарядов. 2 ил.

Формула изобретения RU 2 217 746 C1

Способ испытаний скрепленных зарядов ракетных двигателей твердого топлива, включающийся термостатирование заряда при максимальных отрицательных и положительных температурах его эксплуатации и последующую проверку работоспособности огневыми стендовыми испытаниями, отличающийся тем, что перед огневыми стендовыми испытаниями на заряд воздействуют форсированными температурными нагрузками, значения которых определяют по следующему соотношению:

где TД – температура термостатирования заряда;

TР – равновесная температура заряда;

Кε–1τ0 - коэффициент изменения относительных удлинений топлив от начального значения (ε0) до величины, соответствующей концу срока сохраняемости заряда (ετ);

α – коэффициент теплового расширения топлива;

εд – безразмерный комплекс, характеризующий степень нагружения заряда;

εкр – критическое значение относительных удлинений топлива;

α2а

, α2в
– коэффициенты изменения относительных удлинений и их предельных значений соответственно.

Документы, цитированные в отчете о поиске Патент 2003 года RU2217746C1

РЖ АРД, 1999, реферат 11.34.99
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦА ТВЕРДОГО ТОПЛИВА 1991
  • Поспелов Д.А.
RU2018826C1
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЯ ОБРАЗЦА ТВЕРДОГО ТОПЛИВА 1991
  • Поспелов Дмитрий Алексеевич
  • Яневский Владимир Демьянович
RU2056636C1
DE 1275807, 22.08.1968.

RU 2 217 746 C1

Авторы

Талалаев А.П.

Колесников В.И.

Амарантов Г.Н.

Колач П.К.

Баранов Г.Н.

Пичкалёв Ж.А.

Поляков Б.С.

Одинцов Ю.Т.

Даты

2003-11-27Публикация

2002-02-26Подача