Изобретение относится к области электротехники, а именно к конструкциям электродвигателей с большим отношением длины к диаметру, и может быть использовано в качестве привода для погружных насосных установок, используемых в нефтяных скважинах.
Известен "Электродвигатель погружного насоса" (см. патент RU 2145142, МКИ Н 02 К 3/12, БИ 1, от 27.01.2000), включающий корпус с установленным в нем шихтованным магнитопроводом статора, в пазах зубцовой зоны которого размещены многовитковые секции обмотки с лобовыми частями и отделенный от статора зазором ротор, при этом обмотка выполнена двуслойной, а статор содержит внутреннюю зубцовую зону и охватывающее кольцевое ярмо, причем зубцовая зона имеет перемычки со стороны зазора, а ее пазы выполнены открытыми и ориентированы к охватывающему ярму открытой частью, при этом многовитковые секции двуслойной обмотки, размещенные в пазах зубцовой зоны, имеют сечение, размеры которого определяются из соотношения
h=(0,9-1,1)b,
где h - высота сечения секции;
b - ширина сечения секции,
и выполнены из провода прямоугольного сечения, витки одного слоя секции размещены в пазах параллельно продольной оси паза, витки второго слоя - перпендикулярны этой же оси, а высота лобовой части обмотки не превышает высоту паза.
Недостатками данной конструкции являются:
во-первых, большие габариты электродвигателя и малая мощность;
во-вторых, применение прямоугольного сечения обмотки приводит к сложности в изготовлении, так как при укладке обмотки в пазы требуются очень ровные по длине статора участки, что трудно достигается из-за мягкости применяемого для обмотки материала, а также требует большого количества межвитковых соединений (например, спаек), что приводит к снижению надежности электродвигателя;
в-третьих, применение сборного магнитопровода также снижает технологичность при изготовлении и ухудшает характеристики электродвигателя;
в-четвертых, конструкция требует применения секционных электродвигателей для получения большей мощности при использовании в глубоких скважинах (более 1500 м) или добыче высоковязких нефтей.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому статору асинхронного погружного электродвигателя (ПЭД) является статор "Электродвигателя погружного асинхронного - ПЭД модернизации М2" (см. ТУ 3381-016-00136679-95), включающий сердечник, 18 пазов, двойную обмотку.
Недостатками данной конструкции являются:
во-первых, пазы сердечника не обеспечивают рациональное прохождение магнитного потока;
во-вторых, большие габариты и металлоемкость, за счет нерационального использования магнитного потока;
в-третьих, сложный и трудоемкий процесс изготовления, за счет наличия двойной обмотки и больших габаритов;
в-четвертых, при использовании электродвигателя как привода погружного насоса на глубоких скважинах (более 1500 м), при добыче высоковязких нефтей или с производительностью более 250 м3/сут требуется использование секционных конструкций ПЭД, что приводит к снижению надежности их работы из-за наличия соединительных муфт валов и соединительных разъемов между секциями, что в свою очередь требует строгой соосности секций электродвигателя.
Решаемая техническая задача состоит в том, чтобы создать такую конструкцию статора, которая при сохранении всех потребительских качеств, то есть потребляемая мощность и выходная мощность, имела бы меньшие габариты и, как следствие, меньшую массу, была более проста в изготовлении и исключала применение секционных конструкций ПЭД при добыче высоковязких нефтей, а также при эксплуатации ПЭД на глубинах более 1500 м или с добываемым объемом жидкости более 250 м3/сут, и в различных сочетаниях последних.
Технической задачей предлагаемого изобретения является повышение надежности конструкции ПЭД при добыче высоковязких нефтей, а также при эксплуатации ПЭД на глубинах более 1500 м или с добываемым объемом жидкости более 250 м3/сут, и в различных сочетаниях последних, снижение размеров и металлоемкости конструкции с сохранением потребительских свойств (потребляемая и выходная мощности), упрощение изготовления конструкции за счет уменьшения размеров статора и использования одинарной обмотки, а также за счет исключения применения секционных конструкций ПЭД.
Поставленная задача решается описываемым статором асинхронного погружного электродвигателя, содержащим сердечник, пазы, обмотку.
Новым является то, что статор выполнен укороченным, а обмотка - одинарной, при этом сердечник содержит 12 пазов с расчетным соотношением ширины зубца, расположенного между пазами, в зависимости от толщины спинки паза для 2Р=2, при этом ширину зубца определяют по формуле:
где bз - ширина зубца, см;
Р - число пар полюсов, шт. (2Р=2);
z - число пазов сердечника, шт. (z=12);
Вст - магнитная индукция спинки паза статора, Тл;
Вз - магнитная индукция зубцов, Тл;
hсп - толщина спинки паза, см.
Анализ известных аналогичных решений позволяет сделать вывод об отсутствии в них признаков, сходных с отличительными признаками в заявляемом устройстве, т. е. о соответствии заявляемого решения критерию "существенные отличия".
На фиг.1 показан осевой разрез ПЭД - общий вид;
на фиг.2 - разрез А-А предлагаемой пластины сердечника статора;
на фиг.3 - круговая схема соединения полюсов в обмотке статора;
на фиг.4 - развертка схемы соединения полюсов в обмотке статора;
на фиг.5 - разрез А-А стандартной пластины сердечника статора.
Статор асинхронного погружного электродвигателя содержит: сердечник 1 (см. фиг.1), пазы 2 (см. фиг.2 и 5), обмотку 3 (см. фиг.1). Статор выполнен укороченным, а обмотка 3 - одинарной. Сердечник 1 содержит двенадцать пазов 2 (см. фиг.2) с расчетным соотношением ширины bз зубца 4, расположенного между пазами 2, в зависимости от толщины hсп спинки 5 паза 2 для 2Р=2, при этом ширину bз зубца 4 определяют по формуле:
где bз - ширина зубца, см;
Р - число пар полюсов, шт. (2Р=2);
z - число пазов сердечника, шт. (z=12);
Вст - магнитная индукция спинки паза статора, Тл;
Bз - магнитная индукция зубцов, Тл;
hст - толщина спинки паза, см.
Устройство работает следующим образом.
Выложенную в пазах 2 (см. фиг.2) обмотку 3 (см. фиг.1) подсоединяют по схеме "звезда" к трехфазному источнику тока (см. фиг.3 и см. фиг.4). После чего на обмотку 3 (см. фиг.1) подают рабочее напряжение, создающее в статоре магнитный поток, который взаимодействует с магнитным потоком, возникающим в короткозамкнутой обмотке (не показана) ротора 6. В результате возникает на роторе 6 номинальный крутящий момент (Мн), приводящий ротор 6 во вращение.
Сравнительный анализ работы ПЭД в сопоставимых условиях предлагаемого устройства и по прототипу приведен в таблице 1.
За равные условия приняты параметры сердечников:
1) наружный диаметр (Da) и внутренний диаметр (Di), выбранные из учета параметров корпуса погружного асинхронного двигателя (см. фиг.2 и фиг.5);
2) активная длина (lа), составленная из шести стандартных пакетов длиной 31,23 см;
3) магнитная индукция (Вз) в зубцах 4 (см. фиг.2) сердечника 1 статора;
4) фазовое напряжение (Uф),
5) средняя длина (lсрω) витка статора, выбранная из учета двойной активной длины (Iа), охваченных с торцов с учетом загибов;
6) скольжение ротора 6 (см. фиг.1) относительно статора (sск=0,05 или 5%).
Приведенные расчеты показали, что соотношение магнитной индукции спинки 5 (см. фиг.2 и фиг.5) статора к магнитной индукции зубца , см. пп. 5 и 18 табл. 1:
а) для электродвигателя со статором по прототипу составляет:
условием оптимальной работы асинхронных электродвигателей является:
то есть условие не выполняется, следовательно, погружные насосы по прототипу работают в неоптимальном режиме.
Проведенные исследования показали, что для оптимизации работы ПЭД необходимо ширину зубца 4 (см. фиг.2) увеличивать, это приводит к уменьшению площади сечения паза (Sпаз) и снижению параметров мощности ПЭД, следовательно, требуется уменьшить количество пазов 2 (Z) сердечника 1 статора из условия кратности пар полюсов для трехфазной обмотки, принимаем Z=12, исходя из этого и условий (2) и 2Р=2 по формуле (1) расчитываем ширину зубца 4:
б) Из расчетов видно, что отношение , см. пп.5 и 18 табл. 1, для электродвигателя с укороченным статором (предлагаемым) составляет:
что соответствует условию (2) оптимальной работы асинхронных электродвигателей в технике, то есть ПЭД с предлагаемым статором работает в оптимальном мощностном режиме.
Благодаря использованию формулы (1) получаем оптимальное количество пазов 2 (см. фиг.2) и такую ширину bз зубца 4 относительно толщины hсп спинки 5 паза 2, при которых магнитный поток по сердечнику 1 распределяется с минимальными потерями, что влечет за собой увеличение мощности ПЭД, которые используют предлагаемые статоры. Совокупность отличительных признаков позволяет выполнить статор укороченным, а обмотку 3 одинарной за счет возможности определения оптимальной ширины зубца 4, при этом исключить операции по подбору оптимальной геометрии пазов 2 сердечника 1.
Из расчетных данных (см. п.45 табл.1) видно, что мощность асинхронного ПЭД с предлагаемым статором в 1,6 раза выше, чем у двигателя по прототипу.
Пример конкретного выполнения.
В Республике Татарстан на ОАО "Бугульминский завод электротехнического оборудования" (БЗЭТО) собран и испытан опытный образец предлагаемого асинхронного погружного электродвигателя с укороченным статором (ПЭДУК 90-117М2В5) мощностью 90 кВт, который был сравнен с аналогичным по мощности электродвигателем по прототипу (ПЭД90-117МВ5).
Результаты испытаний приведены в табл. 2.
Из табл. 2 видно, что по всем основным параметрам электродвигатель с предлагаемым статором не уступает стандартному, а масса и длина значительно меньше у электродвигателя с предлагаемым статором 445 кг против 616 кг (или 38,4%) и 6424 мм против 8930 мм (или 39%) соответственно.
При производстве укороченных статоров технологически проще наматывать обмотку 3 (см. фиг.1) на сердечник 1. При сборке мощного электродвигателя в стандартном корпусе с использованием нескольких секций статора с одним валом-ротором увеличивается количество дополнительных внутрикорпусных опорных подшипников ротора, что уменьшает биение ротора и увеличивает долговечность и надежность двигателя.
Все это в совокупности дает возможность в стандартном корпусе разместить больше предлагаемых (укороченных) статоров с единым валом-ротором, увеличивая срок службы электродвигателей, достигая большей мощности при тех же габаритных размерах и исключая применение секционных ПЭД при добыче высоковязких нефтей, а также при эксплуатации ПЭД на глубинах более 1500 м или с добываемым объемом жидкости более 250 м3/сут, и в различных сочетаниях глубины добычи, а также объемов и вязкости извлекаемой из скважины жидкости.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ВИБРАТОР | 2005 |
|
RU2292960C2 |
ПОГРУЖНОЙ МАСЛОЗАПОЛНЕННЫЙ ВЫСОКОСКОРОСТНОЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2018 |
|
RU2672858C1 |
ЭЛЕКТРОХИМИЧЕСКАЯ ЗАЩИТА АСИНХРОННОЙ МАШИНЫ ВЕТОХИНА ДЛЯ НЕФТЕГАЗОВЫХ СКВАЖИН (АМВ НГС) | 2010 |
|
RU2450408C2 |
СИСТЕМА ОХЛАЖДЕНИЯ АСИНХРОННОЙ МАШИНЫ ВЕТОХИНА ДЛЯ НЕФТЕГАЗОВЫХ СКВАЖИН (АМВ НГС) | 2010 |
|
RU2449452C2 |
ПОГРУЖНОЙ ЭЛЕКТРОДВИГАТЕЛЬ С ПОСТОЯННЫМИ МАГНИТАМИ | 1998 |
|
RU2161852C2 |
ГЕНЕРАТОР МАХОВИЧНЫЙ ПЕРЕМЕННОГО ТОКА ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА | 2000 |
|
RU2187690C2 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА ПЕРЕМЕННОГО ТОКА | 2008 |
|
RU2411623C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ПОГРУЖНЫХ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ | 2011 |
|
RU2463612C1 |
ИНДУКТОРНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1998 |
|
RU2139622C1 |
ПОГРУЖНОЙ ЭЛЕКТРОДВИГАТЕЛЬ С ПОСТОЯННЫМИ МАГНИТАМИ | 2002 |
|
RU2247463C2 |
Изобретение относится к области электротехники, а именно к конструкциям электродвигателей с большим соотношением длины к диаметру, и может быть использовано в качестве привода для погружных насосных установок, используемых в нефтяных скважинах. Статор асинхронного погружного электродвигателя, содержащий сердечник, пазы, обмотку. Статор выполнен укороченным. Обмотка выполнена одинарной. Сердечник содержит 12 пазов с расчетным соотношением ширины зубца, расположенного между пазами, в зависимости от толщины спинки паза для 2Р=2. Ширину зубца определяют по формуле
где bз - ширина зубца, см; Р - число пар полюсов, шт. (2Р=2); z - число пазов сердечника, шт. (z=12); Вст - магнитная индукция спинки паза статора, Тл; Вз - магнитная индукция зубцов, Тл; hсп - толщина спинки паза, см. Технический результат изобретения заключается в увеличении срока службы электродвигателей и достижении большей мощности при тех же габаритных размерах. 5 ил., 2 табл.
Статор асинхронного погружного электродвигателя, содержащий сердечник, пазы, обмотку, отличающийся тем, что статор выполнен укороченным, а обмотка - одинарной, при этом сердечник содержит 12 пазов с расчетным соотношением ширины зубца, расположенного между пазами, в зависимости от толщины спинки паза для 2Р=2, при этом ширину зубца определяют по формуле
где bз - ширина зубца, см;
Р - число пар полюсов, шт. (2Р=2);
z - число пазов сердечника, шт. (z=12);
Вст - магнитная индукция спинки паза статора, Тл;
Вз - магнитная индукция зубцов, Тл;
hсп- толщина спинки паза, см.
Способ выделения кодеина из опия | 1924 |
|
SU3381A1 |
ЭЛЕКТРОДВИГАТЕЛЬ ПОГРУЖНОГО НАСОСА | 1998 |
|
RU2145142C1 |
ГЕРМЕТИЗИРОВАННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ ПОГРУЖНОЙ "СУХОГО" ТИПА ДЛЯ СКВАЖИННОГО НАСОСА | 1992 |
|
RU2083047C1 |
УСТРОЙСТВО ДЛЯ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ЛИСТОВОГО ПРОКАТА | 1997 |
|
RU2140629C1 |
Авторы
Даты
2003-12-10—Публикация
2002-07-29—Подача