АКУСТИЧЕСКАЯ ФОРСУНКА Российский патент 2003 года по МПК F23D11/34 

Описание патента на изобретение RU2220372C2

Изобретение относится к устройствам для распыливания различных жидкостей, в том числе топлив, и может быть использовано в энергетической, химической, металлургической областях промышленности.

Известна акустическая форсунка, содержащая корпус с выходным соплом, по оси которого расположен топливный распыливатель с дисковым отражателем, образующим кольцевую резонирующую полость, обращенную к перпендикулярному относительно оси форсунки кольцевому соплу для подачи распылителя, причем резонирующая полость составляет 2,8-4,3 ширины кольцевого сопла (см. описание изобретения к авт. свидетельству 909430, МПК 3 F 23 D 11/34 от 22.05.80 г.).

Недостатком данной конструкции является низкое диспергирование топлива, поступающего из распыливателя, ввиду получения слабой ударной волны при взаимодействии распылителя с дном резонирующей полости.

Известна также акустическая форсунка, содержащая корпус с выходным соплом, по оси которого расположен топливный распыливатель с дисковым отражателем, образующим кольцевую резонирующую полость, обращенную к перпендикулярному относительно оси форсунки кольцевому сгибу для подачи распылителя, которое выполнено в виде входного конфузорного участка и выходного диффузорного участка, сопряженных кольцевой щелью, образующей пережим, а диффузорный участок на выходе снабжен выступами,... (см. SU 1502902 F 23 D 11/34).

Данная конструкция принята в качестве прототипа.

По отношению к известному техническому решению использование акустической форсунки - прототипа позволяет несколько увеличить эффективность сжигания топлива за счет увеличения скорости потока распылителя при столкновении с дном резонирующей камеры, которая получена при прохождении диффузорного и конфузорного каналов.

Недостатком данной конструкции является недостаточная эффективность сжигания топлива, обусловленная уменьшением угла факела за счет кольцевого его обжатия (обжима) расширяющимся потоком отработанного распылителя, а также невозможность использования пара в качестве распылителя.

Задачей заявляемого технического решения является повышение качества распыливания и интенсивности сжигания жидкого топлива.

Поставленная задача достигается тем, что в акустической форсунке, содержащей корпус с выходным соплом и кольцевым резонатором на торцевой стенке, по оси которого расположен топливный распыливатель, на топливном распыливателе установлен сопловый блок, выполненный в виде многогранника, образующего с внутренней поверхностью корпуса замкнутый по кольцу ряд входных конфузорных щелей, плавно переходящих с образованием пережима в диффузорные щели с калибрующим выступом, образующие в сечении сегментные сопла, в которых одна часть щелей с калибрующим выступом выполнена в плоскостях, перпендикулярных к нормали под углом к оси, а вторая - наклонно к касательной плоскости в тангенциальном направлении. При этом сопловый блок форсунки может быть выполнен в виде шестигранника. Кроме того, сопловый блок может быть установлен с возвратно-поступательным перемещением в осевом направлении. Кроме того, торцевая поверхность соплового блока выполнена в виде сопла с конической, сферической или параболической поверхностями.

Установка на топливном распыливателе соплового блока, выполненного в виде многогранника, образующего с внутренней поверхностью корпуса замкнутый по кольцу ряд входных конфузорных щелей, плавно переходящих с образованием пережима в диффузорные щели с калибрующим выступом, образующие в сечении сегментные сопла, в которых одна часть диффузорных щелей выполнена в плоскостях, перпендикулярных к нормали под углом к оси, а вторая - наклонно к касательной плоскости в тангенциальном направлении, позволяет образовывать двуродные потоки скорости - с тангенциально направленным вектором скорости и вектором скорости, направленным параллельно оси форсунки.

При взаимодействии двуродных потоков между собой и с дном резонирующей камеры образуются мощные ударные волны высокой частоты, которые соответственно приобретают тангенциальные и радиально направленные векторы скорости, которые посредством торцевой поверхности соплового блока совместно с отработанным в резонаторе потоком распылителя оказывают соответственно двойное воздействие, что позволяет усилить эффект воздействия за счет взаимодействия двуродных потоков.

Выполнение соплового блока в виде шестигранника позволяет наиболее эффективно повысить качество распыливания и интенсивность сжигания жидкого топлива.

Установка соплового блока с возможностью возвратно-поступательного перемещения относительно резонирующей камеры позволяет периодически осуществлять кратковременную продувку щелей многократно превышающим потоком распылителя и, тем самым, предупредить их засорение.

Выполнение соплового блока с конической, сферическою или параболической поверхностями позволяет фокусировать воздействие ударной волны и отработанного распылителя на топливо.

Изобретение поясняется чертежами, где на фиг.1 изображена форсунка в продольном разрезе, на фиг.2 - в поперечном.

Акустическая форсунка содержит корпус 1 с выходным соплом 5 и кольцевым резонатором 2 на торцевой стенке, по оси которого расположен центробежный топливный распыливатель 3. На топливном распыливателе 3 установлен сопловый блок 4, в данном варианте в виде шестигранника, образующего с внутренней поверхностью корпуса 1 замкнутый по кольцу 9 ряд входных конфузорных щелей 6, плавно переходящих с образованием пережима 8 в диффузорные щели 7 с калибрующим выступом 10 с образованием, в данном варианте, шести сегментных сопел. Часть диффузорных щелей 7 с калибрующим выступом 10 выполнены не перпендикулярно к нормали соплового блока 4, а наклонно под углом α (см. фиг.2) к касательной плоскости в тангенциальном направлении. Сопловый блок 4 установлен с возможностью возвратно-поступательного перемещения в осевом направлении.

Форсунка работает следующим образом.

Распылитель, в данном варианте пар, поступает по кольцевому каналу 9 в корпус 1 с сопловым блоком 4, где при прохождении шести конфузорных щелей 6, пережима 8, диффузорных щелей 7 и калибрующих выступов 10 достигает сверхзвуковой скорости, причем три из шести потоков приобретают преимущественно тангенциально направленный вектор скорости в отличие от трех других, которые имеют вектор скорости, направленный параллельно оси форсунки. При взаимодействии двуродных потоков между собой и с дном кольцевого резонатора 2 образуются мощные ударные волны высокой частоты, которые соответственно приобретают тангенциальные и радиально направленные векторы скорости, последние посредством торцевой поверхности (в данном случае конической) 11 соплового блока 4, совместно с отработанным в резонаторе потоком распылителя, оказывают соответственно и двойное воздействие. Так радиально направленная высокочастотная ударная волна совместно с аэродинамическим потоком осуществляют диспергирование топлива, в частности мазута, поступающего из центробежного распыливателя 3, а тангенциально направленная волна и выходящий закрученный аэродинамический поток распылителя оказывают диспергирующее воздействие на более крупные частицы топлива, одновременно максимально увеличивают угол истечения распыленного топлива - факела, создавая при этом на поверхности выходного сопла 5 вихревую газовую подушку, которая защищает его от забрасывания капельками топлива и в последствии от закоксовывания.

Использование заявленного технического решения позволяет значительно повысить качество распыливания и интенсивность сжигания жидкого топлива.

Похожие патенты RU2220372C2

название год авторы номер документа
АКУСТИЧЕСКОЕ УСТРОЙСТВО 2002
  • Гавриков А.И.
  • Старцев Б.Т.
  • Новиков В.М.
  • Смекалов М.А.
RU2220373C1
Акустическая форсунка 1987
  • Степанов Юрий Николаевич
  • Полянский Виктор Андреевич
  • Капаев Анатолий Иванович
  • Федотов Владимир Михайлович
  • Соколова Надежда Николаевна
SU1502902A2
ФОРСУНКА ДЛЯ СЖИГАНИЯ ЖИДКОГО ТОПЛИВА 1990
  • Солоха В.А.
SU1825066A1
Акустическая форсунка 1988
  • Степанов Юрий Николаевич
  • Полянский Виктор Андреевич
  • Соколова Надежда Николаевна
  • Сосин-Ленский Эмануил Иосифович
SU1638461A1
ГАЗОСТРУЙНЫЙ АКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ 2007
  • Гавриков Александр Ильич
RU2350843C1
Форсунка 1982
  • Кочегаров Александр Александрович
  • Лифшиц Михаил Наумович
  • Калентьев Владимир Иванович
  • Дроконов Алексей Михайлович
SU1084535A1
Пневматическая форсунка 1981
  • Телятников Гаррий Владимирович
  • Срибнер Николай Григорьевич
  • Староверов Александр Андреевич
  • Горшков Николай Иванович
  • Козин Константин Васильевич
  • Косиков Геннадий Иванович
  • Захаренко Петр Александрович
  • Пинюгин Юрий Викторович
  • Коваленко Евгений Петрович
  • Комаров Юрий Гаврилович
SU1043419A1
ФОРСУНКА ДЛЯ РАСПЫЛИВАНИЯ ЖИДКИХ СРЕД 1990
  • Солоха Владимир Александрович
RU2031743C1
КАМЕРА СГОРАНИЯ С КОЛЬЦЕВЫМ УЛЬТРАЗВУКОВЫМ АВТОГЕНЕРАТОРОМ РАСПЫЛИВАНИЯ ТОПЛИВА 2000
  • Козырев А.В.
  • Козырев В.Т.
RU2170884C1
Форсунка 1976
  • Степанов Юрий Николаевич
  • Борисов Юлиан Ярославович
  • Кравчук Иван Петрович
  • Сидоров Михаил Иванович
SU840570A1

Иллюстрации к изобретению RU 2 220 372 C2

Реферат патента 2003 года АКУСТИЧЕСКАЯ ФОРСУНКА

Изобретение относится к устройствам для распыливания различных жидкостей, в том числе топлив, и может быть использовано в энергетической, химической, металлургической областях промышленности. Технический результат, заключающийся в повышении качества распыливания и интенсивности сжигания жидкого топлива, обеспечивается за счет того, что в акустической форсунке, содержащей корпус с выходным соплом и кольцевым резонатором на торцевой стенке, по оси которого расположен топливный распыливатель, согласно изобретению на топливном распыливателе установлен сопловый блок, выполненный в виде многогранника, образующего с внутренней поверхностью корпуса замкнутый по кольцу ряд входных конфузорных щелей, плавно переходящих с образованием пережима в диффузорные щели с калибрующим выступом, образующие в сечении сегментные сопла, в которых одна часть диффузорных щелей с калибрующим выступом выполнена в плоскостях, перпендикулярных к нормали, под углом к оси, а вторая - наклонно к касательной плоскости в тангенциальном направлении. 3 з. п.ф-лы, 2 ил.

Формула изобретения RU 2 220 372 C2

1. Акустическая форсунка, содержащая корпус с выходным соплом и кольцевым резонатором на торцевой стенке, по оси которого расположен топливный распыливатель, отличающаяся тем, что на топливном распыливателе установлен сопловый блок, выполненный в виде многогранника, образующего с внутренней поверхностью корпуса замкнутый по кольцу ряд входных конфузорных щелей, плавно переходящих с образованием пережима в диффузорные щели с калибрующим выступом, образующие в сечении сегментные сопла, в которых одна часть диффузорных щелей с калибрующим выступом выполнена в плоскостях, перпендикулярных к нормали под углом к оси, а вторая – наклонно к касательной плоскости в тангенциальном направлении.2. Акустическая форсунка по п.1, отличающаяся тем, что сопловый блок выполнен в виде шестигранника.3. Акустическая форсунка по п.1, отличающаяся тем, что сопловый блок установлен с возможностью возвратно-поступательного перемещения в осевом направлении.4. Акустическая форсунка по п.1, отличающаяся тем, что торцевая поверхность соплового блока выполнена в виде конической, сферической или параболической поверхности.

Документы, цитированные в отчете о поиске Патент 2003 года RU2220372C2

Акустическая форсунка 1987
  • Степанов Юрий Николаевич
  • Полянский Виктор Андреевич
  • Капаев Анатолий Иванович
  • Федотов Владимир Михайлович
  • Соколова Надежда Николаевна
SU1502902A2
Акустическая форсунка 1980
  • Степанов Юрий Николаевич
  • Борисов Юлиан Ярославович
  • Розенгауз Борис Миронович
  • Сидоров Михаил Иванович
SU909430A1
Форсунка для распыливания тяжелых жидких топлив 1980
  • Баширов Виктор Васильевич
  • Шайхутдинов Зайнулла Гайфуллинович
  • Хайрединов Нил Шахиджанович
  • Гизетдинов Минегаян Саматович
  • Ахметшин Равиль Миргасимович
  • Петров Энгельс Семенович
  • Маричев Федор Николаевич
  • Андреев Вадим Евгеньевич
SU966409A2
ПЛОСКОПЛАМЕННАЯ ФОРСУНКА ЧМЫХАЛОВА 0
SU260066A1
ФОРСУНКА 1992
  • Кириленко Николай Яковлевич
RU2036380C1
АКУСТИЧЕСКАЯ ФОРСУНКА 1992
  • Смановских В.А.
  • Смановских Н.А.
RU2024323C1
Способ обогрева стекловаренной ванной печи 1987
  • Левитин Леонид Яковлевич
  • Проценко Леонид Маркович
  • Токарев Валентин Дмитриевич
  • Рожков Владимир Александрович
  • Игнатов Сергей Владимирович
SU1470671A1
СПОСОБ ХРАНЕНИЯ ПЛОДОВ ИЛИ ОВОЩЕЙ 2002
  • Надыкта В.Д.
  • Ермоленко С.А.
  • Квасенков О.И.
RU2220538C1

RU 2 220 372 C2

Авторы

Гавриков А.И.

Чудов М.В.

Андрианов В.Н.

Буланов В.Ф.

Соболев В.А.

Кулемин В.А.

Новиков А.Б.

Даты

2003-12-27Публикация

2001-07-19Подача